Author Archive Florian Simon

ByFlorian Simon

Interspaces – Acousmatic study with OM-SoX

Interspaces juxtaposes sounds from human civilization with sounds from nature. Four pairs of field recordings are presented, which are filtered according to the principle of a vocoder according to the spectrum of a section of the counterpart.

Responsible: Florian Simon

Interspaces shows the following four pairs (format: total recording – source of the spectrum):

  1. Chirping Arctic terns – Vowel “E” called by humans
    Lively market, people talking and calling – Arctic tern call

  2. Rippling of a river – Accelerating car
    Main road – rushing of a river

  3. Forest scenery, rustling leaves and birds – Train horn
    Station concourse – chirping of a songbird

  4. Thunderstorm – clinking of cutlery
    Business in a restaurant kitchen – thunder

The field recordings come from the FreeToUseSounds library.

Interspaces uses an equilateral octagonal loudspeaker arrangement, whereby the two channels of the source material are each placed at opposite points in the array. The two recordings of a pair are also offset by 90 degrees from each other by default, so that four sound sources can be perceived.

Each recording is divided into several sections of random size within a certain frame and concatenated again in randomized order with short crossfades. The number of sections increases with each pair of recordings: 4, 9, 16 and finally 23. With each new section, the two sound sources also “move” in the array by 0.25 channels in a certain direction. Since the number of sections is the same for both recordings of a pair, but not the position of the cuts, deviations from the base of a 90-degree spacing and a greater variety of sounds are created. Interspaces is designed as an installation to allow free exploration of the stereo fields.

Interspaces was created in OpenMusic using functions from the OM-SoX library. The underlying program consists of two parts. The first is used to create the manipulated recordings by spectral analysis (sox-dft), splitting the source material into up to 4096 frequency bands (sox-sinc), adjusting their volume levels according to the generated spectrum (sox-level) and reassembling them (sox-mix).

The second part of the program uses the synthesis patch of a maquette to control the division into sections (sox-trim) and their spatialization (sox-remix) and final alignment (sox-splice) for each of the eight generated audio files, and finally to organize the finished blocks in terms of time (sox-pad and sox-mix). In the last step, the time saved by the crossfades must be taken into account and subtracted from the onset value/x position in the maquette.

Audio (binaural mixed to stereo):

Alex Player - Best audio player

Unfortunately, this vocoder method has the disadvantage that the individual frequency bands are initially very quiet and therefore artefacts in the form of noise occur when applying the gain and the final normalization. Conversely, clipping occurs when certain frequencies are strongly represented in both source recordings. If you lower the gain values accordingly to avoid this, quieter sections in the result may be barely audible, depending on the size of the dynamic difference. The noise can be easily eliminated by selecting higher gain values, but this increases the clipping problem. In the above version of Interspaces, the best compromise between the two effects was sought for all eight audio clips.



ByFlorian Simon

PixelWaltz: Sonification of images in OpenMusic

Abstract: The OpenMusic program PixelWaltz can be used to convert images into symbolic representations of music (pitches and onset times). Options for image manipulation are available with which the result can be additionally influenced.

Responsible persons: Florian Simon

Mapping: Pitch

The pixels of the image are scrolled through line by line and the respective red, green and blue values (between 0 and 1) are mapped to a desired pitch range. This means that three pitch values in midicent are always obtained from one pixel. As two adjacent pixels are similar in many cases, this mapping method often results in repeating patterns every three notes. This is the reason for the title of the project.

It is also possible to limit the number of note values output.

Mapping: Application times

A constant value can be set for the start times and note durations. A humanizer effect can also be switched on, which randomly shifts each note forwards or backwards within a specified range. Starting from the basic tempo, accelerandi and ritardandi can be created by passing lists of three numbers. These represent the start note, end note and speed of the tempo change. (20 50 -1) creates an accelerando from note 20 to note 50, in which the intervals per note become one millisecond shorter. A positive third value corresponds to a ritardando.


Different random ranges for “red”, “green” and “blue” notes can be defined for the volume or velocity. The values generated in this way can also be modulated sinusoidally so that, for example, the volume can rise and fall over longer periods of time. This requires the specification of a wavelength in the number of notes and the maximum deviation factor.


PixelWaltz offers the option of generating an accompanying voice, which consists of individual additional tones in a desired fixed note number frequency. If this is not divisible by 3, a polymetric is often created. The pitch is determined randomly and can be between 3 and 6 semitones below the respective “accompanied” note.

Image processing

In order to create further variation, the sonification section of PixelWaltz is preceded by tools for manipulating the input image. In addition to adjusting the image size, brightness and contrast, it is also possible to shift the color values and thus recolor the image. The changes in the musical translation are immediately noticeable: More brightness leads to a higher average pitch, more contrast reduces the number of different pitch values. With a blue-dominated image, the last notes of the triplet will usually be the highest.

Sound results

The tonal results naturally differ depending on the input – but photographed material in particular often leads to the same wave-like overall structure, which winds irregularly and at a slow tempo chromatically, sometimes upwards, sometimes downwards. The accompaniment supports this effect and can form a counter-pulse to the main voice.