Tag Archive OM-SoX

ByAlexander Nguyen

HOA Encoder using OM-SoX

Abstract: OpenMusic and the OM-SoX library were used to create a way to encode mono audio files as a 3D Ambisonics signal up to the third order.

Responsible: Alexander Nguyen (WS 2023/24)

Main text:

Ambisonics

Ambisonics is a method for describing a two- or three-dimensional sound field (in the following I shall restrict myself to 3D Ambisonics). Ambisonics uses a basis of orthogonal functions and the spherical coordinate system to describe the sound field along a spherical surface resulting from a sound source . The simplest case is “Zero-th Order Ambisonics”, which resembles an ideal omnidirectional microphone: exactly one audio channel is used (also called the “W” channel, according to Furse-Malham naming). With “First Order Ambisonics” (FOA), the signal is split into an additional three channels (three bases): These are the three “directional” components (also called X, Y, Z channels). Assuming an ideal point sound source is placed at the end of one of these axes, then only this axis (with respect to the same ordinal number) will contain the signal. In the case of Ambisonics, the channels of lower orders are always included, i.e. the FOA signal consists of a total of four audio channels. In general, the number of channels for a 3D Ambisonics signal of the $n$th order can be calculated using the formula $(n+1)^2$ (i.e. for $n=0$: 1; for $n=1$: 4, for $n=2$: 9, for $n=3$: 16). Ambisonics signals with ‘higher’ order numbers (…, 2, 3, 4, …) are also referred to as Higher Order Ambisonics (HOA).

Channel Numbering

An HOA signal therefore consists of several components. There are several approaches to sorting the components in a multi-channel audio file. The sorting chosen here for this project is “Ambisonic Channel Numbering” (ACN), in which each channel is assigned an integer number starting at zero (0). The first channel is therefore labeled “0”, the second channel “1”, the third channel “2” and so on. This numerical designation can be used to determine the ‘order’ ($l$) and the ‘degree‘ ($m$) to which the component belongs. See Table 1 for an overview of all components of 3rd Order Ambisonics (3OA) – and a collation with an alternative labeling, “Furse Malham” (FuMa).

Auswertung der Formeln für l und m anhand der ACN-Werte. Zusätzlich die alternative Bezeichnung nach Furse-Malham (FuMa).

Table 1. Evaluation of the formulas for l and m based on the ACN values. In addition, the alternative designation according to Furse-Malham (FuMa)

Normalization

The values $l$ (order) and $m$ (degree) are used to calculate a normalization factor for each audio channel. The normalization used here is called “Semi-Normalized 3D” (SN3D). See Table 2 for an overview of the normalization factors for all components of 3rd Order Ambisonics.

ACN together with SN3D normalization reflect a currently common convention called ambiX (Nachbar et al., 2011).

SN3D-Faktoren für Order l und Degree m, d.h. N_lm^((SN3D)). Hinweis: Wenn also m=0 ist, ist auch immer N_l0^((SN3D) )=1, und die Tabelle ist symmetrisch bezüglich m.

Table 2. SN3D factors for order $l$ and degree $m$, i.e. $N_{lm}^{(SN3D)}$. Note: If $m=0$, then $N_{l0}^{(SN3D)}=1$, and that the table is symmetric with respect to $±m$.

Encoding

To map a point sound source in Ambisonics, its audio signal is added to each of the audio channels, weighted using the normalization factor just described and an attenuation factor. The attenuation factor, which will be defined below, depends on the angle of incidence (described in the spherical coordinate system) and the ACN number (i.e. order and degree). An intuition (w.r.t. FOA): The attenuation is minimum (0 dB or multiplication factor 1, respectively) if the angle of incidence coincides with one of the axes in an ordinary 3-dimensional coordinate system ($x$, $y$ or $z$), maximum (-∞ dB or factor 0) if it is perpendicular to it.

In Ambisonics, the 3D coordinate system is usually defined as follows: The “front” (relative to the listener’s point of view) is defined as the positive x-axis. Being a right-handed system, this implies that the positive y-axis points to the left” and the positive z-axis points “up“. For the transformation to polar coordinates, i.e. to the spherical coordinate system, one defines 0° azimuth (θ) coincident to the positive x-axis on the xy-plane, counterclockwise. 0° elevation (ϕ) coincident to the xy-plane, maximum positive, if coincident to the positive z-axis (see Figure 1), with:

$0≤θ≤2π$

$-π/2≤ϕ≤π/2$

Abbildung 1. Visualisierung des Koordinatensystems und der Bezugspunkte. Positiv-x = vorne, positiv-y = links, positiv-z = oben. θ (theta) linksdrehend (0° = vorne), ϕ „aufwärtsdrehend“ (0° = in der xy-Ebene).

Figure 1. Visualization of the coordinate system and the reference points. Positive-x = front, positive-y = left, positive-z = top. θ (theta) left-turning (0° = front), ϕ “up-turning” (0° = in the xy plane).

In order to encode a time $t$-dependent signal $S(t)$ of a point sound source with angles of incidence $θ, ϕ$ in Ambisonics, the eventual Ambisonics signal component is calculated separately for each channel $B_l^m$. To do this, the signal is multiplied by the attenuation factor $Y_l^m$ :

$B_l^m (t) := S(t)\cdot Y_l^m (\theta, \phi)$

The formula for the attenuation factor is (see Nachbar et al., 2011):

\[
Y_l^m(\theta, \phi) :=N_l^{|m|} \cdot P_l^{|m|}(sin(\phi)) \cdot \begin{cases}
sin(|m|\theta) & \text{if } m < 0\\
cos(|m|\theta) & \text{if } m > 0\\
1 & \text{if } m=0
\end{cases}
\]

where $P_l^m$ is the “associated Legendre polynomial” of $l$-th order and $m$-th degree, and $P_l$ is the (unassociated) Legendre polynomial of $l$-th order (in the Rodrigues representation). These are defined as follows:

\[\begin{eqnarray*}
P_l(x) &:=& \frac{1}{2^l\cdot l!}\cdot \frac{d^l}{dx^l} \left[ (x^2-1)^l \right] \\
P_l^m(x) &:=& (1-x^2)^{\frac{m}{2}}\cdot \frac{d^m}{dx^m} \left[ P_l(x) \right] \\
&=& \frac{1}{2^l\cdot l!}\cdot (1-x^2)^\frac{m}{2}\cdot\frac{d^{l+m}}{dx^{l+m}} \left[ (x^2-1)^l \right]
\end{eqnarray*}\]

For example:

\[\begin{eqnarray*}
P_0^0(x) &=& (1-x^2)^\frac{0}{2}\cdot \frac{d^0}{dx^0} \left[ P_0(x) \right] \\
&=& 1\cdot P_0(x) = 1 \cdot 1 = 1
\end{eqnarray*}\]

\[\begin{align*}
P_2^1(x) &= (1-x^2)^\frac{1}{2}\cdot \frac{d^1}{dx^1} \left[ P_2(x) \right] \\
&= (1-x^2)^\frac{1}{2}\cdot \frac{d}{dx} \left[ \frac{1}{2^2\cdot 2!}\cdot \frac{d^2}{dx^2} [ (x^2-1)^2 ] \right] \\
&= (1-x^2)^\frac{1}{2}\cdot \frac{d}{dx} \left[ \frac{1}{8}\cdot \frac{d^2}{dx^2} [ x^4-2x^2+1 ] \right] \\
&= (1-x^2)^\frac{1}{2}\cdot \frac{d}{dx} \left[ \frac{1}{8}\cdot \frac{d}{dx} [ 4x^3-4x ] \right] \\
&= (1-x^2)^\frac{1}{2}\cdot \frac{d}{dx} \left[ \frac{1}{8}\cdot [ 12x^2-4 ] \right] \\
&= (1-x^2)^\frac{1}{2}\cdot \frac{d}{dx} \left[ \frac{3}{2} x^2 -\frac{1}{2} \right] \\
&= (1-x^2)^\frac{1}{2}\cdot \left[ \frac{3\cdot 2}{2} x \right] \\
&= (1-x^2)^\frac{1}{2}\cdot \frac{6}{2}x \\
&= 3x\cdot (1-x^2)^\frac{1}{2} \\
\end{align*}\]

 

Let $x≡sin(ϕ)$, then we obtain one of the spherical harmonics (see Table 3 for further examples):

\[\begin{align*}
P_2^1(sin(\theta)) &= 3\cdot sin(\phi)\cdot \sqrt{1-sin^2(\phi)} \\
&= 3\cdot sin(\phi)\cdot \sqrt{cos^2(\phi)} \\
&= 3\cdot sin(\phi)\cdot cos(\phi) \\
&= \frac{3\cdot sin(2\phi)}{2} \\
\end{align*}\]

 

The formulas for FOA are thus:

\[\begin{align*}
\text{ACN 1 / W:}\qquad &B_0^0(t) =S(t)\cdot Y_0^0(\theta, \phi)= S(t) \\
\text{ACN 2 / Y:}\qquad &B_1^{-1}(t) =S(t)\cdot Y_1^{-1}(\theta, \phi)= S(t)\cdot cos(\phi) \cdot sin(\theta) \\
\text{ACN 3 / Z:}\qquad &B_1^0(t) =S(t)\cdot Y_1^1(\theta, \phi)= S(t)\cdot sin(\phi) \\
\text{ACN 4 / X:}\qquad &B_1^1(t) =S(t)\cdot Y_1^1(\theta, \phi)= S(t) \cdot cos(\phi) \cdot cos(\theta) \\
\end{align*}\]

Tabelle 3. Ambisonics-Formeln bis zur dritten Ordnung (ACN-Zählung, SN3D-Normalisierung, 0≤θ≤2π Azimut (0° = vorne, linksdrehend), -π/2≤ϕ≤π/2 Elevation (0° = auf der xy-Ebene, aufwärtsdrehend)).

Table 3. Ambisonics formulas up to third order (ACN counting, SN3D normalization, $0≤θ≤2π$ azimuth (0° = forward, counterclockwise), $-π/2≤ϕ≤π/2$ elevation (0° = on the xy plane, upward rotation))

Read More

ByLukas Körfer

Wave field synthesis with OM-SoX

Abstract: This final project was created at the end of the winter semester 2023/24 as part of the course “Symbolische Klangverarbeitung und Analyse/Synthese” (eng. Symbolic Sound Processing and Analysis/Synthesis) of the MA Music Informatics. An application for sound spatialization was developed in the program OpenMusic using the library OM-SoX implementing Steinberg and Snow’s “acoustic curtain”, a technique for wave field synthesis.

Responsible: Lukas Körfer

Wave field synthesis

Wave field synthesis (WFS for short) is the spatialization of virtual sound sources using a high-density loudspeaker array. This spatialization technique attempts to reproduce a physical soundfield over an extended area in a way to provide for multiple non-conicident listening positions a congruent impression of the localization of sound sources. This is achieved by generating a wave field consisting of a large number of individual sound sources that are synchronized in such a way that a coherent sound wave is created, for which given certain constraints it should be possible to localize a virtual sound source in the room.

 

For a better understanding of how WFS works, the subject can be approached via the physical phenomenon of interference pattern formation behind an obstacle with openings. When a wave encounters one or more slits, it is diffracted through the openings and propagates behind the obstacle. This leads to the formation of a pattern of wave interference on the other side of the obstacle. Similarly, wave field synthesis uses an array of loudspeakers to generate a coherent sound wave. This requires precise calculation and control of the phase and amplitude relationships of the sound waves emanating from each speaker. These calculations are dependent on the distances of each individual loudspeaker in the array relative to the position in space of the respective virtual sound source.

Project description

For this project, a program was to be created with the general goal of ultimately obtaining a multi-channel audio file that can be used for wave field synthesis with a loudspeaker array through certain influence and adjustments by a user. To achieve this, it was first necessary to design which parameters should be set and influenced by the user of the program.

User input

 

In addition to the audio file, which is to be used for spatialization, the user must specify certain information about the loudspeaker array on the one hand and the position or positions of one or more virtual sound sources relative to the loudspeaker array on the other. In order to make the configuration of the program as simple and intuitive as possible, I have decided to mainly use a picture object in which the structure can be recorded. The positions of the loudspeakers can be specified by drawing a rectangle and those of the virtual sound sources with circles. One or more circles can be drawn, with each circle representing a sound source. The loudspeakers can be specified in two different ways. If only a single rectangle is drawn in the picture object, this represents the area of a loudspeaker array. In order to be able to determine the specific positions of the individual loudspeakers in the next step of the program, two additional pieces of information are required. Firstly, the length of the loudspeaker array in meters; this also influences the scale for the complete drawn setup. Secondly, the number of loudspeakers in the drawn area must be specified. As soon as more than one rectangle is specified by the user, each individual rectangle represents an individual loudspeaker. In order to be able to specify a scale for the drawn structure in this variant – which was previously possible by specifying the length of the loudspeaker array – the width/height of the area of the complete picture object can now be specified. The first variant, where the loudspeaker array can only be drawn with a rectangle, makes the application much less complicated, but also requires the loudspeakers to be linear and evenly spaced.

Calculating distances

 

Once all the graphics of the picture object have been read out, they must be divided into rectangles and circles for further processing. If only one rectangle is found, the position and dimension of the rectangle and the two specifications for the length and number of loudspeaker arrays can first be used to determine the position of each individual loudspeaker within the array in meters. If there are several rectangles, this step is not necessary and the center points of all specified rectangles are simply determined. It is then possible to calculate the Euclidean distance from all sources to each individual loudspeaker on the same scale using another Lisp function. It should be noted that all graphics drawn by the user in the Picture object that do not correspond to a rectangle or a circle are ignored and not taken into account for the further calculations. As any number of virtual sound sources can be specified for the application, all circles that exist in the picture object are also captured in this step, whereby the order is irrelevant.

Sound processing

 

Sound processing is implemented in the next section of the program. Basically, a multi-channel file is created with the sound file specified by the user together with the previously calculated distances, which can be used for the intended loudspeaker array. This process takes place in a nested OM loop with two levels.

 

In the first level, it is first iterated over each element within the distance list. Each of these elements corresponds to a list that belongs to a virtual sound source, which contains the distances to each loudspeaker. Before the process enters the second level of the loop, further calculations are performed in a Lisp function using the current distance list.

This function iterates over each distance and determines the time delay, volume reduction and a cutoff frequency for a lowpass filter to calculate the air absorption of high frequencies and collects them in a list. In the next step, the result of this Lisp function is used to enter the second level of the loop.

 

Here, the respective SoX effect is applied to the calculated value; SoX level for volume reduction, SoX lowpass for air absorption and SoX pad for the time delay. The resulting audio file is saved for each iteration. Each of the three lists has as many values as the previously calculated distances from the current sound source to the speakers. This means that each audio file saved in this loop represents one channel of the subsequent multi-channel file for the current sound source.

The multi-channel file can now be created in the next step in the first layer with SoX-Merge and stored temporarily at the end of the loop. This process is repeated for all remaining virtual sound sources (if existing) and are collected as the output of this upper loop. All multi-channel files of the respective sound sources are then merged with a SoX-Mix.

If only one virtual sound source is specified by the user, the output of the outermost loop will only consist of a single multi-channel file for this one source. In this case, the SoX-Mix is not required and it would even lead to an error during the evaluation of the program if the input of the SoX-Mix consisted of only one audio file. The OM-If therefore avoids the use of the SoX-Mix as soon as the output of the patcher, in which the distances are determined, only consists of one list, which means that only one circle for a virtual sound source has been drawn in the picture object.

Finally, silence can be added to the multi-channel file using the SoX pad, depending on preference, if the selected audio file is particularly short, for example. At the same time, the final multi-channel file is saved in Outfile as “wfsOutFile.wav”.

ByFlorian Simon

Interspaces – Acousmatic study with OM-SoX

Interspaces juxtaposes sounds from human civilization with sounds from nature. Four pairs of field recordings are presented, which are filtered according to the principle of a vocoder according to the spectrum of a section of the counterpart.

Responsible: Florian Simon

Interspaces shows the following four pairs (format: total recording – source of the spectrum):

  1. Chirping Arctic terns – Vowel “E” called by humans
    Lively market, people talking and calling – Arctic tern call

  2. Rippling of a river – Accelerating car
    Main road – rushing of a river

  3. Forest scenery, rustling leaves and birds – Train horn
    Station concourse – chirping of a songbird

  4. Thunderstorm – clinking of cutlery
    Business in a restaurant kitchen – thunder

The field recordings come from the FreeToUseSounds library.

Interspaces uses an equilateral octagonal loudspeaker arrangement, whereby the two channels of the source material are each placed at opposite points in the array. The two recordings of a pair are also offset by 90 degrees from each other by default, so that four sound sources can be perceived.

Each recording is divided into several sections of random size within a certain frame and concatenated again in randomized order with short crossfades. The number of sections increases with each pair of recordings: 4, 9, 16 and finally 23. With each new section, the two sound sources also “move” in the array by 0.25 channels in a certain direction. Since the number of sections is the same for both recordings of a pair, but not the position of the cuts, deviations from the base of a 90-degree spacing and a greater variety of sounds are created. Interspaces is designed as an installation to allow free exploration of the stereo fields.

Interspaces was created in OpenMusic using functions from the OM-SoX library. The underlying program consists of two parts. The first is used to create the manipulated recordings by spectral analysis (sox-dft), splitting the source material into up to 4096 frequency bands (sox-sinc), adjusting their volume levels according to the generated spectrum (sox-level) and reassembling them (sox-mix).

The second part of the program uses the synthesis patch of a maquette to control the division into sections (sox-trim) and their spatialization (sox-remix) and final alignment (sox-splice) for each of the eight generated audio files, and finally to organize the finished blocks in terms of time (sox-pad and sox-mix). In the last step, the time saved by the crossfades must be taken into account and subtracted from the onset value/x position in the maquette.

Audio (binaural mixed to stereo):

 

Unfortunately, this vocoder method has the disadvantage that the individual frequency bands are initially very quiet and therefore artefacts in the form of noise occur when applying the gain and the final normalization. Conversely, clipping occurs when certain frequencies are strongly represented in both source recordings. If you lower the gain values accordingly to avoid this, quieter sections in the result may be barely audible, depending on the size of the dynamic difference. The noise can be easily eliminated by selecting higher gain values, but this increases the clipping problem. In the above version of Interspaces, the best compromise between the two effects was sought for all eight audio clips.


 

 

ByAndres Kaufmes

Transient Processor

Transient Processor

SKAS symbolic sound processing and analysis/synthesis

Prof. Dr. Marlon Schumacher

Intermediate project by Andres Kaufmes

HfM Karlsruhe – IMWI (Institute for Music Informatics and Musicology)

Winter semester 2022/23

_____________

For this interim project, I worked on the implementation of a transient processor in OpenMusic with the help of the OM-Sox library.
A transient processor (also known as a transient designer or transient shaper) can be used to influence the attack/release behavior of the transients of an audio signal.

The first hardware device presented was the SPL TD4, introduced by SPL in 1998, which was available as a 19″ rack device and is still available today in an advanced version.

Transient Designer from SPL. (c) SPL

Transient Designers are particularly suitable for processing percussive sounds or speech. First, the transients must be isolated from the desired audio signal; this can be done using a compressor, for example. A short attack time “ducks” the transients and the signal can be subtracted from the original. The audio signal can then be processed with further effects in the course of the signal chain.

Transient processor patch. FX chain of the two signal paths (left “Transient”, right “Residual”).

At the top of the patch you can see the audio file to be processed, from which, as just described, the transients are isolated using a compressor and the resulting signal is subtracted from the original. Now two signal paths are created: The isolated transients are processed in the left-hand “chain”, the residual signal in the right-hand one. After both signal paths have been processed with audio effects, they are mixed together, whereby the mixing ratio (dry/wet) of both signal paths can be adjusted as desired. At the end of the signal processing there is a global reverb effect.

“Scope” view of the two signal paths. Sketches of the possible signal path and processing.

Sound examples:

Isolated signal:

Residual signal:

Byadmin

BAD GUY: An acousmatic study

Abstract:

Inspired by the “Infinite Bad Guy” project, and all the very different versions of how some people have fueled their imaginations on that song, I thought maybe I could also experiment with creating a very loose, instrumental cover version of Billie Eilish’s “Bad Guy”.

Supervisor: Prof. Dr. Marlon Schumacher

A study by: Kaspars Jaudzems

Winter semester 2021/22
University of Music, Karlsruhe

To the study:

Originally, I wanted to work with 2 audio files, perform an FFT analysis on the original and “replace” its sound content with content from the second file, based only on the fundamental frequency. However, after doing some tests with a few files, I came to the conclusion that this kind of technique is not as accurate as I would like it to be. So I decided to use a MIDI file as a starting point instead.

Both the first and second versions of my piece only used 4 samples. The MIDI file has 2 channels, so 2 files were randomly selected for each note of each channel. The sample was then sped up or down to match the correct pitch interval and stretched in time to match the note length.

The second version of my piece added some additional stereo effects by pre-generating 20 random pannings for each file. With randomly applied comb filters and amplitude variations, a bit more reverb and human feel was created.

Acoustic study version 1

Acousmatic study version 2

The third version was a much bigger change. Here the notes of both channels are first divided into 4 groups according to pitch. Each group covers approximately one octave in the MIDI file.

Then the first group (lowest notes) is mapped to 5 different kick samples, the second to 6 snares, the third to percussive sounds such as agogo, conga, clap and cowbell and the fourth group to cymbals and hats, using about 20 samples in total. A similar filter and effect chain is used here for stereo enhancement, with the difference that each channel is finely tuned. The 4 resulting audio files are then assigned to the 4 left audio channels, with the lower frequency channels sorted to the center and the higher frequency channels sorted to the sides. The same audio files are used for the other 4 channels, but additional delays are applied to add movement to the multi-channel experience.

Acousmatic study version 3

The 8-channel file was downmixed to 2 channels in 2 versions, one with the OM-SoX downmix function and the other with a Binauralix setup with 8 speakers.

Acousmatic study version 3 – Binauralix render

Extension of the acousmatic study – 3D 5th-order Ambisonics

The idea with this extension was to create a 36-channel creative experience of the same piece, so the starting point was version 3, which only has 8 channels.

Starting point version 3

I wanted to do something simple, but also use the 3D speaker configuration in a creative way to further emphasize the energy and movement that the piece itself had already gained. Of course, the idea of using a signal as a source for modulating 3D movement or energy came to mind. But I had no idea how…

Plugin “ambix_encoder_i8_o5 (8 -> 36 chan)”

While researching the Ambix Ambisonic Plugin (VST) Suite, I came across the plugin “ambix_encoder_i8_o5 (8 -> 36 chan)”. This seemed to fit perfectly due to the matching number of input and output channels. In Ambisonics, space/motion is translated from 2 parameters: Azimuth and Elevation. Energy, on the other hand, can be translated into many parameters, but I found that it is best expressed with the Source Width parameter because it uses the 3D speaker configuration to actually “just” increase or decrease the energy.

Knowing which parameters to modulate, I started experimenting with using different tracks as the source. To be honest, I was very happy that the plugin not only provided very interesting sound results, but also visual feedback in real time. When using both, I focused on having good visual feedback on what was going on in the audio piece as a whole.

Visual feedback – video

Channel 2 as modulation source for azimuth

This helped me to select channel 2 for Azimuth, channel 3 for Source Width and channel 4 for Elevation. If we trace these channels back to the original input midi file, we can see that channel 2 is assigned notes in the range of 110 to 220 Hz, channel 3 notes in the range of 220 to 440 Hz and channel 4 notes in the range of 440 to 20000 Hz. In my opinion, this type of separation worked very well, also because the sub-bass frequencies (e.g. kick) were not modulated and were not needed for this. This meant that the main rhythm of the piece could remain as a separate element without affecting the space or the energy modulations, and I think that somehow held the piece together.

Acousmatic study version 4 – 36 channels, 3D 5th-order Ambisonics – file was too big to upload

Acoustic study version 4 – Binaural render

Byadmin

Spectral Select: An acousmatic 3D audio study

 

 

Abstract:
Spectral Select explores the spectral content of one sample and the amplitude curve of a second sample and unites them in a new musical context. The meditative character of the output created by iteration is both contrasted and structured by louder amplitude peaks.
In a revised version, Spectral Select was spatialized in Ambisonics HOA-5 format.

Supervisor: Prof. Dr. Marlon Schumacher

A study by: Anselm Weber
Winter semester 2021/22
University of Music, Karlsruhe

 


About the study:
In which forms of expression is the connection between frequency and amplitude expressed ? Are both areas intrinsically connected and if so, what could be approaches to redesigning this order?
Such questions have occupied me for some time. That’s why the attempt to redesign them is the core topic of Spectral Select.
I was inspired by AudioSculpt from IRCAM, which we got to know in our course: “Symbolic Sound Processing and Analysis/Synthesis” together with Prof. Dr. Marlon Schumacher and Brandon L. Snyder and which we partially rebuilt.
Spectral Edit works on a similar principle, but instead of having a user work out interesting areas within a spectrum of a sample, it was decided to use a second audio sample. This additional sample (from now on referred to as “amplitude sound” in the course of this article) determines how the first sample (from now on referred to as “spectral sound”) is to be processed by OM-Sox.
To achieve this, two loops are used:
First, individual amplitude peaks are analyzed out of the amplitude sound in the first “peakloop”. This analysis is then used in the heart of the patch, the “choosefreq” loop, to select interesting sub-ranges from the spectral sample. Loud peaks filter narrower bands from higher frequency ranges and form a contrast to weaker peaks, which filter somewhat broader bands from lower frequency ranges.

peakloop – Analysis
choosefreq Loop – Audio Processing


How small the respective iteration steps are affects both the length and the resolution of the overall output. Depending on the sample material, a large number of short grains or fewer but longer subsections can be created. However, both of these parameters can be selected freely and independently of each other.
In the enclosed piece, for example, a relatively high resolution (i.e. an increased number of iteration steps) was chosen in combination with a longer duration of the cut sample. This creates a rather meditative character, whereby no two sections will be 100% identical, as there are constantly minimal changes under the peak amplitudes of the amplitude sound.
The still relatively raw result of this algorithm is the first version of my acousmatic study.

Acousmatic study version 1


The subsequent revision step was primarily aimed at working out the differences between the individual iteration steps more precisely. For this purpose, a series of effects were used, which in turn behave differently depending on the peak amplitude of the amplitude sound. To make this possible, the series of effects was integrated directly into the peak loop.

Acousmatic study version 2


In the third and final revision step, the audio was spatialized to 8 channels.
The individual channels sound into each other and change their position in a clockwise direction. This means that the basic character of the piece remains the same, but it is now also possible to follow the “working through” of the choosefreq loop spatially. To maintain this spatiality, the output was then converted to binaural stereo for the upload using Binauralix.

Acoustic study version 3 – Binaural

 

Spectral Select – Ambisonics

In the course of a further revision, Spectral Select was re-spatialized using the spatialization class “Hoa-Trajectory” from OM-Prisma and converted to the Ambisonics format.
To ensure that this step fits in well conceptually and sonically with the previous edits, the amplitude sound should also play an important role in the spatial position.
The possibilities for spatializing sounds with the help of Open Music and OM Prism are numerous. In the end, it was decided to work with Hoa-Trajectory. Here, the sound source is not bound to a fixed position in space and can be described with a trajectory that is scaled to the total duration of the audio input.

Spatialization with HOA.TRAEJECTORY

 

 

The trajectory is created depending on the amplitude analysis in the previous step.
A simple, three-dimensional circular movement, which spirals downwards, is perturbed with a more complex, two-dimensional curve. The Y-values of the more complex curve correspond to the analyzed amplitude values of the amplitude sound.
Depending on the scaling of the amplitude curve, this results in more or less pronounced deviations in the circular motion. Higher amplitude values therefore ensure more extensive movements in space.

 

 


It is interesting to note that OM-Prisma also takes Doppler effects into account. As a result, it is also audible that at higher amplitude values, more extreme distances to the listening position are covered in the same time. This step therefore has a direct influence on the timbre of the entire piece.
Depending on the scaling of the trajectory, fast movements can be strongly overemphasized, but artifacts can also occur (if the distance is too great).
To get a better impression, 2 different runs of the algorithm with different distances to the listener follow.

 

Version with extreme Doppler effects which can result in artifacts – binaural stereo

Versionwith closer distance and more moderate Dopp ler effects – Binaural Stereo

 

In contrast to the previous sound examples, the spectral sound and amplitude sound have been replaced in this example. This is a longer sound file for analyzing the amplitudes and a less distorted drone as a spectral sound.
The idea behind this project is to experiment with different sound files anyway.
Therefore, the old algorithm has been reworked to offer more flexibility with different sound files:

Revised scalable version of the old algorithm for selecting from the spectral sound

In addition, a randomized selection is now made from the spectral sound on the time axis. As a result, any shaping context should come from the magnitude of the amplitude sound and any timbre should be extracted from the spectral sound.

 

ByVeronika Reutz

Composing in 8 channels with OpenMusic

In this article I present my ideas, creative processes and technical data for the patch programmed for the class “Symbolic Sound Processing and Analysis/Synthesis” with Prof. Marlon Schumacher. The idea of this text is to show the technical solutions for my creative ideas and to share the knowledge gained to help the reader with their ideas. The purpose of this patch is to take sounds from everyday life and transform them into your own composition using several processes within Open Music.

Responsible: Veronika Reutz Drobnić, winter semester 21/22

Introduction, Iteration 1

The initial idea of the piece was to transform everyday sounds, for example the sound of a kettle, into a different, processed sound by implementing technical solutions in Open Music. This patch processes and merges several files into one composition. There are three iterations of the patch that I worked on during the semester. I will describe them in chronological order.

The original idea for the patch came from musique concréte. I wanted to make a 2-minute piece from concrete sounds (not synthesized in Open Music, but recorded). This patch consists of three subpatches that are connected to the maquette in the main patch.

The main patch

Read More

Pages: 1 2 3