Monatsarchiv Februar 28, 2022

VonChristoph Zimmer

Akusmatische Studie von Christoph Zimmer

Dieser Beitrag handelt über die drei Iterationen einer akusmatischen Studie von Christoph Zimmer, welche im Rahmen des Seminars „Symbolische Klangverarbeitung und Analyse/Synthese“ bei Prof. Dr. Marlon Schumacher an der HFM Karlsruhe durchgeführt wurden. Es wird über die grundlegende Konzeption, Ideen, aufbauende Iterationen sowie die technische Umsetzung mit OpenMusic behandelt.

Verantwortliche: Christoph Zimmer, Master Student Musikinformatik der HFM Karlsruhe

 

Grundlegende Idee und Konzept:

Ich arbeite normalerweise viel mit Hardware für Musik, besonders gerne auch im Bereich von DIY. Das trifft sich auch oft mit der damit verbundenen Organisation und Optimierung des Workflows die mit dieser Hardware verbunden ist. Als es uns Stundenten zur Aufgabe wurde eine akusmatische Studie in Form von Musique concrète zu produzieren war ich zu beginn orientierungslos. Bisher habe ich mich nur wenig mit „experimentellen“ Musikgenre beschäftig. Die Existenz von Musique concrète war mir bis zu diesem Punkt ehrlich gesagt nicht einmal bekannt. Ich wurde mit dieser Aufgabe also aus meinem üblichen Workflow, der Klangsynthese mit Hardware, und somit auch meiner Komfortzone herausgeworfen. Jetzt mussten Feldaufnahmen als Samples her.
 
Meine DIY einstellung hat mich intuitiv zu dem Entschluss gebracht die Samples selber aufzunehmen. Es sollte fokus auf eine Variation an Samples gelegt werden. Von dem Gedanken, mich von meiner bisherigen Arbeit komplett abzukapseln war ich jedoch aber immernoch abgetan. Ich wollte eine „Meta-Verbindung“ zu meinem Hardware fokusierten arbeiten in das Stück einbringen. Basierend auf dieser Idee entstand dann das Stück „chris baut einen rollwagen für seine hardware“
 

Der fertige Rollwagen für Hardware. Weitere Bilder unter: https://www.reddit.com/r/synthesizers/comments/ryyw8e/i_finally_made_a_proper_stand_for_my_synth_rack/

Erste Iteration

Das Stück sollte also aus Samples bestehen welche nicht willkürlich produziert oder aus dem Internet heruntergelden wurden, sondern als „Nebenprodukt“ einer tatsächlich selbst durchgeführten Arbeit entstehen, in diesem Fall das Konstruieren eines Rollwagens für Musik-Hardware. Im Laufe von zwei Wochen habe ich mit meinem Smartphone die bei dem Durchlaufen verschiedenster Arbeitsschritte entstehende Klänge aufgenommen. Da ich mir in diesen Arbeitsschritten unterschiedliche Materialien und Bearbeitungsmethoden zu nutze machte, entstand nicht nur eine große Variation an Klangtexturen, sondern es bildete sich auch von selbst die makroskopische Struktur des Stückes. Es hat sich damit sozusagen von selbst komponiert. Die gewünschte Meta-Verbindung ist somit entstanden. Als der Rollwagen nun komplett war, wurde es Zeit mit der Produktion des Stückes zu beginnen.
 
Die Rohaudio-Dateien der Aufnahmen sind jeweils mehrere Minuten lang. Um die Handhabung in OpenMusic zu vereinfachen, wurden die einzelnen Klangelemente als .wav Dateien exportiert. Dafür wurde die DAW REAPER genutzt. Das Resultat waren etwa 350 einzenlne Samples. Unter folgendem Link sind diese verfügbar:
 
https://drive.google.com/file/d/1hRk4OZvNEJLkpo_bzSZxP1lwO0YlcpLy/view
 
Hier ein paar Beispiele der verwendeten Klangelemente:
 

 

Mit den vorbereiteten Samples konnte nun das Arbeiten in OpenMusic beginnen.
Wie es für Musique concrète üblich ist, sollten die Samples mit verschiedenen Effekten bearbeitet werden um den musikalischen Kontext zu stützen. Für mich war es aber auch wichtig, dass diese nicht so dominieren, dass die Klänge unerkennbar werden und der Kontext verloren geht. Deswegen kam mir die Idee, für das Arrangement ein Workspace innerhalb eines OpenMusic Patches zu programmieren, um die Samples dynamisch bearbeitbar zu machen. Dafür stellte sich das „Maquette“ Objekt als optimal heraus. Grundlegend ermöglicht diese es andere Objekte innerhalb in einer x-Achse (Zeit) und y-Achse (parametrisierbar) zu platzieren. Diese Objekte können dann auf ihre eigene Eigenschaften im Kontext zu der Maquette zugreifen. Diese Funktionen habe ich dann zu nutzte gemacht um vier verschiedene „Template Temporal Boxes“ zu erstellen welche in verschiedener Weise die parametrisierung der Maquette nutzen um Effekte auf die jeweiligen Samples anzuwenden. Das nutzen von mehreren Vorlagen reduziert weiterhin die Komplexität, während eine Variation an Modulationsmöglichkeiten erhalten bleibt:
 
tempboxa
  • Position y –> Reverbance
  • Size y –> Playback speed
  • Random –> panning

OM Patch der tempboxa

 
tempboxb
  • Position y –> Delay time
  • Size y –> Playback speed
  • Random –> panning

OM Patch der tempboxb

 
 
tempboxc
  • Position y –> Tremolo speed
  • Size y –> Playback speed
  • Random –> panning

OM Patch der tempboxc

 
 
tempboxd
  • Position y –> Lowpass cutoff frequency
  • Size y –> Playback speed
  • Random –> panning

OM Patch der tempboxd

 

Mit dem Erstellen dieser Boxen konnte die Komposition des Stückes beginnen.
Wie schon erwähnt wurde, sollte die makroskopische Struktur des Ablaufs der Konstruktion beibehalten werden. Praktisch wurden bestimmte Samples der Sektionen (Recherche, Skizzieren, Stahl verarbeitung, Schweißen, Stahl bohren, 3d Druck, Holz Bohrung, Holz schleifen, Streichen und Montage) ausgewählt um diese mit den parametrisierten Tempboxes zu interessant klingenden Kombinationen zu verarbeiten, welche den aktuellen Arbeitsschritt beschreiben sollen.
 
 

Ausschnitt der Maquette mit Arrangement

 

Das Resultat der ersten Iteration:

 

Zweite Iteration

 
Mein Ziel der zweiten Iteration war es Akzentierungen auf Samples, welche Ankerpunkte des Stückes darstellen, zu setzen. Genauer gesagt, sollte das in der ersten Iteration verwendete Panning überarbeitet werden, indem die vorhandene Logik mit einem provisorischen Haas Effekt (Delay zwischen dem linken und rechten Kanal) ausgestattet wird. Hierfür wird das Resultat des bisherigen Pannings invers dupliziert und dann mit einem Delay (bis 8 ms) und Level adjustment erweitert, welche sich dynamisch zu der stärke des Pannings verhalten. Schließlich werden beide Sounds gemerged und aus der tempbox ausgegeben.

OM Patch des erweiterten Pannings

 

Das Resultat der ersten Iteration:

 

Dritte Iteration

Für die dritte und letzte Iteration wurde es zur Aufgabe, das Stück für ein beliebig wählbares Setup von 8 Kanälen zur Verfügung zu stellen. Die Struktur sollte dabei nicht verändert werden. Dies gab mir wieder die Möglichkeit an dem Panning zu arbeiten. Anstatt die Grenze des Panning Randomizers auf 8 Kanäle zu setzten, kam mir der Gedanke die makroskopische Struktur noch weiter vorzuheben. Dafür habe Ich das folgende Setup von Lautsprechern gewählt:
 

Setup der Lautsprecher (mit Nummerierung der Kanäle)

 
Mit diesem Setup ist es möglich abhängig von den Sektionen des Stückes das Panning auf jeweils zwei gegenüberliegende Lautsprecher zu verteilen. Im Ablauf des Stückes soll sich der Klang dann als langsame Rotationsbewegung um den Zuhörer bewegen.
 

Teil 1 des makroskopischen Pannings

  
 
 
 

Teil 2 des makroskopischen Pannings

 
 

Teil 3 des makroskopischen Pannings

 
Dieses Prinzip trifft parallel auf die Akzentierung mancher Samples von der zweiten Iteration: Während sich die anderen Samples (je nach Sektrion) auf verschiedene Lautsprecher-Paare verteilen, bleiben die Anker-Elemente auf den Kanälen 1 und 2 bestehen.
 
Die finale Version ist auch im 2 Kanal Format verfügbar:

 

Vierte Iteration

Bei dieser Iteration wurde es zur Aufgabe mit den Tools welche wir im Rahmen der Veranstaltung „Visuelle Programmierung der Raum/Klangsynthese“ (VPRS) bei Prof. Dr. Marlon Schumacher und Brandon L. Snyder erlernt haben das Stück zu Spatialisieren
 
„chris baut einen Rollwagen für seine hardware“ war an diesem Punkt schon so weit ausgebaut, dass ich dieses bei Metamorphoses 2022 (ein Wettbewerb für akusmatische Stücke) eingereicht habe. Hierfür war es notwendig, das Stück auf ein 16 Kanal Setup zu mixen. Aufgrund der baldigen Deadline blieb mir nur wenig Zeit um das Stück auf die Anforderungen anzupassen. Deswegen wurden die Kanäle einfach in REAPER verdoppelt und ein LFO Panning auf die jeweiligen Paare hinzugefügt. Leider wurde das Stück im Nachhinein nicht akzeptiert, da die Länge des Stückes nicht den Anforderungen entsprachen. Da auch die Spatialisierung zu wünschen übrig lies, kam mir die Gelegenheit also gerade recht die neu gelernten Tools zu nutzen um diese zu verbessern.
 
Ich entschloss mich die  Metamorphoses 16-Kanal Spatialisierung zu verwerfen und den Stand der dritten Iteration wieder aufzugreifen. Mein Ziel war eine Spatialisierung, welche nicht nur auf die makroskopische Struktur (wie z.B. die Abschnitte Stahl Verarbeitung, 3D Druck…) eingeht, sondern auch in die mikroskopische Struktur, also einzelne Klänge dynamischer auszulegen. Als Ausgangsmaterial diente das aus OM exportierte Audio (8 Kanal), welches dann mithilfe der Ambisonics (IEM) VSTs bearbeitet werden sollte.
 
Die Ambisonics Template für REAPER wurde als Workspace Vorlage verwendet ,da diese schon ein Setup für die Audio Busse bereitstellte um schließlich ein Ambisonics File 5. Ordnung und ein Binauralen Stereo Downmix zu rendern. Im ersten Schritt wurden die 8 Kanal Audio Datei so geroutet, dass sich diese separiert bearbeiten ließen. Hierfür wurden jeweils Kanal 1-2 , 3-4, 5-6 und 7-8 zu neuen Tracks geschickt und der Master-Send deaktiviert. Diese Tracks wurden dann als Multikanal Tracks mit 36 Kanälen definiert und der Stereo Encoder (IEM) in die Effekt Chain eingefügt. Die Parameter für die Spatialisierung (Azimuth, Elevation, Roll und Width) wurden dann als Envelopes in die Timeline von REAPER hinzugefügt um deren dynamisch Bearbeitung zu ermöglichen. Schließlich können alle Tracks in den Ambisonics Bus zusammengeführt werden. Der Binaurale Downmix wurde dabei als Monitoring Ausgang verwendet.
 

Eine vereinfachte Darstellung des Routings in REAPER

 
Praktisch wurden Punkte per Hand in die Envelope Tracks eingefügt, zwischen welchen dann linear Interpoliert wurde um dynamische Veränderungen der Parameter hervorzurufen. Hierbei bin ich intuitiv Vorgegangen und habe mir Abschnitte vereinzelt angehört um mir eine grundlegende Vorstellung zu bilden, welche Art von Spatialisierung diesen Abschnitt unterstreichen würde. Dann wurde auf die einzelnen Klänge und ihre Herkunft eingegangen, und versucht mit Hilfe der Parameter diese zu Beschreiben. Beispiele dafür sind: beim Bohren eine schneller werdende Drehbewegung, bei dem Piepsen der digitalen Eingabe des 3D-Druckers ein hin und her Springen oder beim Zusammenknüllen von Papier ein komplettes Durcheinander. Mir war diese Form von Workflow bereits gängig, nicht nur durch das Verwenden von DSP VSTs in der DAW, sondern auch bei dem Programmieren von DMX Lichtern über den Envelope.
 
Bei der Bearbeitung Empfand ich das visuelle Feedback des EnergyVisualizer (IEM) nicht nur sehr hilfreich um den Überblick zu behalten. Ich entschloss mich deswegen diese Aufzunehmen und zu dem Binauralen Downmix zuzufügen:
 
 
Alle unkompremierten Dateien finden sie unter folgendem Link: https://drive.google.com/drive/folders/1bxw-iZEQTNnO92RTCmW_l5qRFjeuVxA9?usp=sharing
 

VonMarlon Schumacher

Smart Speaker Evaluation

Fragestellung

Im Rahmen des Designs eines Distributed Smart Speaker Arrays*, ob AoIP (Audio over IP) Lautsprecher der Firma Genelec hierfür geeignet sind und voraussetzende Kriterien erfüllen.

Kriterien zur Examinierung der Lautsprechermodelle 4420A und 4430A.

Die Genelec AoIP Lautsprecher bieten folgende Vorteile:

  • Übertragung von Strom,  Audio und Konfigurationsdaten mit nur einem Kabel.
  • Der Interne DSP der Lautsprecher kann via Netzwerk konfiguriert werden, und bietet 20 Filter an, zudem delay und Gesamtlautstärke
  • Es können sowohl Digital (RJ45 AES67) als auch Analog (Euroblock) Eingänge gleichzeitig mit interner Mischung verwendet werden
  • Es besteht eine offizielle public API.
  • Dimensionen sind klein genug (ca 15cm Breite, s. Spatial Aliasing), um kontinuierliche Arrays zur Holophonie (Wellenfeldsynthese, kompakte Arrays, ein/auslaufende Schallfelder, etc.) einzusetzen

Testziele:

  • DSP Parameter setzen (über API, ohne Herstellereigene Software)
  • Relative Latenz mehrer Lautsprecher (selber Stream)
  • Lautstärke/Schalldruck (aufgrund der kleinen Dimensionen)
  • Verhalten bei hohen Pegeln (Klirrfaktor, etc.)
  • Steuerprotokoll-Dokumentation der internen API
  • Latenz bei Steuerung der internen DSP Einstellungen über API

 

Vorläufige Evaluation

Steuerung

Die Lautsprecher werden per REST-Schnittstelle gesteuert. Der Hersteller bietet eine öffentliche API, die einige Einstellungen erlaubt. Die Software zur Konfiguration nutzt ebenfalls diese REST-API, jedoch mit mehr Endpunkten. Mit Hilfe von Wireshark konnte die Kommunikation direkt mitgelesen werden. Es findet keinerlei Verschlüsselung statt. 

 

Dank an Stephan Westphal für Durchführung der Tests.

 

VonMarlon Schumacher

Zylia 6DOF navigable audio

Zylia’s ZM-1 microphone is designed for three-dimensional recording. It allows the user to record sound scenes and separate single sound sources though a combination of microphone array technology and digital signal processing algorithms.

The spherical microphone has 19 capsules that each have an omni-directional polar pattern and that use Micro-Electro-Mechanical Systems (MEMS) technology. The durable casing features an LED ring status indicator. It is capable of recording at sample rates of 44.1 and 48 kHz and 24- bit sample depth. Gain adjustment controls in steps of 0.5 dB from −12 dB to +32 dB are provided. The microphone is 6.1 in high and 4 in in diameter. It weighs 15.5 oz. The ZM-1 has an integrated desktop stand and it can be mounted on microphone stands that use 1⁄4-in and 5⁄8- inthreads. It connects to computers using a micro-USB port in the base.

Zylia Studio is a software application for recording and processing from the Zylia microphone. It can be used to balance and pan the multichannel recording and to separate it into individual audio tracks for use in a digital audio workstation (DAW), if required. Two separation modes are available, a virtual microphone mode and a high separation mode. The first of these mimics a directional microphone and allows any part to be isolated from the three-dimensional space. The high separation mode uses an additional process to mimic the behavior of a close microphone, reducing ambient sounds and background noise and giving even better sound source separation. The audio can be stored as PCM WAV files or using a lossless compression that reduces the size by half. The software is compatible with Macintosh, Windows, and Linux operating systems.

A PRO version of the software is available as a VST/AU plug-in. This provides spatial filtering and signal separation tools within a DAW and gives the user access to virtual microphones with different polar patterns and characteristics in post-production. A number of different group and surround sound presets are provided.

An Ambisonics converter can process convert multi-channel audio into b-format higher-order Ambisonics. It also supports FuMA or ACN channel ordering and SN3D or N3D normalization. It is also compatible with YouTube’s ambiX and Facebook’s TBE formats. The converter is available as a standalone application or as a VST plug-in.

VonLukas Körfer

Speaking Objects

Abstract

In diesem Projekt entstand im Rahmen der Lehrveranstaltung „Studienprojekte Musikprogrammierung“ eine audio-only Augmented Reality Klanginstallation an der Hochschule für Musik Karlsruhe. Wichtig für den nachfolgenden Text ist die terminologische Abgrenzung zur Virtual Reality (kurz: VR), bei welcher der Benutzer komplett in die virtuelle Welt eintaucht. Bei der Augmented Reality (kurz: AR) handelt es sich um die Erweiterung der Realität durch das technische Hinzufügen von Information.

 

Motivation

Zum einen soll diese Klanginstallation einem gewissen künstlerischen Anspruch gerecht werden, zum anderen war auch mein persönliches Ziel dabei, den Teilnehmern das AR und besonders das auditive AR näher zu bringen und für diese neu Technik zu begeistern. Unter Augmented Reality wird leider sehr oft nur die visuelle Darstellung von Informationen verstanden, wie sie zum Beispiel bei Navigationssystemen oder Smartphone-Applikationen vorkommen. Allerdings ist es meiner Meinung nach wichtig die Menschen auch immer mehr für die auditive Erweiterung der Realität zu sensibilisieren. Ich bin der Überzeugung, dass diese Technik auch ein enormes Potential hat und bei der Aufmerksamkeit in der Öffentlichkeit, im Vergleich zum visuellen Augmented Reality, ein sehr großer Nachholbedarf besteht. Es gibt mittlerweile auch schon zahlreiche Anwendungsbereiche, in welchen der Nutzen des auditiven AR präsentiert werden konnte. Diese erstrecken sich sowohl über Bereiche, in welchen sich bereits viele Anwendung des visuellen AR vorfinden, wie z.B. der Bildung, Steigerung der Produktivität oder zu reinen Vergnügungszwecken als auch in Spezialbereichen wie der Medizin. So gab es bereits vor zehn Jahren Unternehmungen, mithilfe auditiver AR eine Erweiterung des Hörsinnes für Menschen mit Sehbehinderung zu kreieren. Dabei konnte durch Sonifikation von realen Objekten eine rein auditive Orientierungshilfe geschaffen werden.

 

Methodik

In diesem Projekt sollen Teilnehmer*innen sich frei in einem Raum, in welchem Gegenstände positioniert sind, bewegen können und obwohl diese in der Realität keine Klänge erzeugen, sollen die Teilnehmer*innen Klänge über Kopfhörer wahrnehmen können. In diesem Sinne also eine Erweiterung der Realität („augmented reality“), da mithilfe technischer Mittel Informationen in auditiver Form der Wirklichkeit hinzugefügt werden. Im Wesentlichen erstrecken sich die Bereiche für die Umsetzung zum einen auf die Positionsbestimmung der Person (Motion-Capture) und die Binauralisierung und zum anderen im künstlerischen Sinne auf die Gestaltung der Klang-Szene durch Positionierung und Synthese der Klänge.

Abbildung 1

Das Motion-Capture wird in diesem Projekt mit dem Polhemus G4 System realisiert. Die Richtung- und Positionsbestimmung eines Micro-Sensors, welcher an einer vom Teilnehmer getragenen Brille befestigt wird, geschieht durch ein Magnetfeld, welches von zwei Transmittern erzeugt wird. Ein Hub, der über ein Kabel mit dem Micro-Sensor verbunden ist, sendet die Daten des Motion-Captures an einen USB-Dongle, der an einem Laptop angeschlossen ist. Diese Daten werden an einen weiteren Laptop gesendet, auf welchem zum einen die Binauralisierung geschieht und der zum anderen letztendlich mit den kabellosen Kopfhörern verbunden ist.

In Abbildung 2 kann man zwei der sechs Objekte in je einer Variante (Winkel von 45° und 90°) betrachten. In der nächsten Abbildung (Abb. 3) ist die Überbrille (Schutzbrille die auch über einer Brille getragen werden kann) zu sehen, welche in der Klanginstallation zum Einsatz kommt. Diese Brille verfügt über einen breiten Nasensteg, auf welchem der Micro-Sensor mit einem Micro-Mount von Polhemus befestigt ist.

Abbildung 2


Abbildung 3

Wie schon zuvor erläutert, müssen für den Aufbau der Klanginstallation auch diverse Entscheidung vor einem künstlerischen Aspekt getroffen werden. Dabei geht es um die Positionierung der Gegenstände / Klangquellen und die Klänge selbst.

Abbildung 4


Abbildung 5

Die Abbildung 4 zeigt eine skizzierte Draufsicht des kompletten Aufbaus. Die sechs blau gefärbten Kreise markieren die Positionen der Gegenstände im Raum und natürlich gleichzeitig die der Klangquellen der Szene in Binauralix, welche in Abbildung 5 zu erkennen ist. Den farblosen Bereichen (in Abb. 4), im entweder 45° oder 90° Winkel, um die Klangquellen, können Richtung und Winkel der Quellen entnommen werden.

Die komplett kabellose Positionserfassung und Datenübertragung, ermöglicht den Teilnehmer*innen das uneingeschränkte Eintauchen in dieses Erlebnis der interaktiven realitätserweiternden Klangwelt. Die Klangsynthese wurde mithilfe der Software SuperCollider vorgenommen. Die Klänge entstanden hauptsächlich durch diverse Klopf- und Klickgeräusche, welche durch das SoundIn-Objekt aufgenommen wurden, und schließlich Veränderungen und Verfremdungen der Klänge durch Amplituden- und Frequenzmodulation und diverse Filter. Durch Audio-Routing der Klänge auf insgesamt 6 Ausgangskanäle und „s.record(numChannels:6)“ konnte ich in SuperCollider eine zweiminütige Mehrkanal Audio-Datei erstellen. Beim Abspielen der Datei in Binauralix wird automatisch der erste Kanal auf die Source eins, der zweite Kanal auf die Source 2 usw. gemappt.

 

Technische Umsetzung

Die technische Herausforderung für die Umsetzung des Projekts bestand zuerst grundlegen aus dem Empfangen und dem Umformatieren der Daten des Sensors, sodass diese in Binauralix verwertet werden können. Dabei bestand zunächst das Problem, dass Binauralix nur für MacOS und die Software für das Polhemus G4 System nur für Windows und Linux verfügbar sind. Da mir zu diesem Zeitpunkt neben einem MacBook auch ein Laptop mit Ubuntu Linux als Betriebssystem zur Verfügung stand, installierte ich die Polhemus Software für Linux.

Nach dem Bauen und Installieren der Polhemus G4 Software auf Linux, standen einem die fünf Anwendungen „G4DevCfg“, „CreateSrcCfg“, „g4term“, „g4display“ und „g4export“ zur Verfügung. Für mein Projekt muss zuerst mit „G4DevCfg“ alle verwendeten Devices miteinander verbunden und konfiguriert werden. Mit der Terminal-Anwendung „g4export“ kann man durch Angabe der zuvor erstellten Source-Configuration-File, der lokalen IP-Adresse des Empfänger-Gerätes und einem Port die Daten des Sensors über UDP übermitteln. Die Source-Configuration-File ist eine Datei, in welcher zum einen Position und Orientierung der Transmitter durch einen „Virtual Frame of Reference“ festgelegt werden und zum anderen Einstellungen zu Eintritts-Hemisphäre in das Magnetfeld, Floor Compansation und Source-Calibration-File vorgenommen werden können. Zum Ausführen der Anwendung müssen zu diesem Zeitpunkt die Transmitter und der Hub angeschaltet, der USB-Dongle am Laptop und der Sensor am Hub angeschlossen und der Hub mit dem USB-Dongle verbunden sein. Wenn sich nun das MacBook im selben Netzwerk wie der Linux-Laptop befindet, kann mit der Angabe des zuvor genutzten Ports die Daten empfangen werden. Dies geschieht bei meiner Klanginstallation in einem selbst erstellen MaxMSP-Patch.

Abbildung 6

In dieser Anwendung muss zuerst auf der linken Seite der passende Port gewählt werden. Sobald die Verbindung steht und die Nachrichten ankommen, kann man diese unter dem Auswahlfeld in der raw-Form betrachten. Die sechs Werte, die oben im mittleren Bereich der Anwendung zu sehen sind, sind die aus der rohen Nachricht herausgetrennten Werte für die Position und Orientierung. In dem Aktionsfeld darunter können nun finale Einstellung für die richtige Kalibrierung vorgenommen werden. Darüber hinaus gibt es auch noch die Möglichkeit die Achsen individuell zu spiegeln oder den Yaw-Wert zu verändern, falls unerwartete Probleme bei der Inbetriebnahme der Klanginstallation aufkommen sollten. Nachdem die Werte in Nachrichten formatiert wurden, die von Binauralix verwendet werden können (zu sehen rechts unten in der Anwendung), werden diese an Binauralix gesendet.

Das folgenden Videos bieten einen Blick auf die Szene in Binauralix und einen Höreindruck, während sich der Listener — gesteuert von den Sensor-Daten — durch die Szene bewegt.

 

 

Vergangene Vorstellungen der Klanginstallation

Die Klanginstallation als Beitrag im Rahmen der EFFEKTE-Vortragsreihe des Wissenschaftsbüro-Karlsruhe

 

 

test
Die Klanginstallation als Gegenstand eines Workshops für die Kulturakademie an der HfM-Karlsruhe
VonLorenz Lehmann

Interaktive Komposition/Performance mit Live-Zeichnung und Elektronik

Vorwort

Im folgenden möchte ich einen Einblick in die künstlerische und technische Entwicklung meines Stückes „Warten auf die Nacht“ geben. Dieser Beitrag wird fortlaufend aktualisiert und wird so den Entwicklungsprozess dokumentieren.

Das Stück soll von einer Performerin und einer Zeichnerin ausgeführt werden.

 

Technischer Bericht

Setup

Auf der Bühne steht die Performerin. Der Beamer muss so positioniert werden, dass das Bild über die Performerin hinweg auf die Projektionsfläche geworfen wird. Es sollte kein Schattenwurf der Performerin entstehen.

Fig. 1: Technisches Setup.

Sound-Analyse

Fig. 2: Spektrale Analyse in Echtzeit.

Live generierte Soundsynthese

Fig 3: CSound-Modul

Live-Zeichnung

 Künstlerische Reflexion