Jahresarchiv September 22, 2023

VonMoritz Reiser

Komposition mit Zufallsprozessen in Open Music und Common Lisp

Abstract: Ein Projekt über den Einsatz von Zufallsprozessen in einem musikalischen Kontext. Grundsätzlich kommen zwei verschiedene Modelle zum Einsatz. Diese erzeugen Akkordfolgen, welche anschließend mit einem Rhythmus und einer darüber liegenden Melodie ausgestattet werden.

Verantwortliche: Moritz Reiser

 

Überblick

Der Gesamtaufbau des Programms, welcher dem Inhalt des Hauptpatches entspricht, ist in Abbildung 1 zu sehen. Ganz oben befindet sich die Auswahl des zu verwendenden Algorithmus zur Akkordfolgenerzeugung. Über das Auswahlfeld links oben kann dieser ausgewählt werden. Durch die beiden Inputfelder der Subpatches lassen sich jeweils die gewünschte Länge sowie der Startakkord bzw. die Tonart der Komposition festlegen.

Anschließend folgt eine zufällige Bestimmung der jeweiligen Tonlängen. Hier lassen sich das Tempo in BPM sowie die Häufigkeiten der vorkommenden Tonlängen in Vielfachen von Viertelnoten einstellen. Über eine „dx→x“-Funktion werden aus den berechneten Dauern die jeweiligen Startzeitpunkte der Akkorde berechnet. Hier muss beim Verwenden des Programms darauf geachtet werden, dass Open Music aufgrund des zweimal verwendeten Outputs in den beiden Strängen jeweils neue Zufallszahlen berechnet, wodurch der Bezug zwischen Startzeitpunkt und Tondauer verloren geht. Abhilfe kann hier dadurch geschaffen werden, dass nach einmaliger Ausführung die Subpatches der Akkordfolgen- und der Tonlängengenerierung mit „Lock Eval“ gesperrt werden und das Programm anschließend noch einmal ausgeführt wird, um die Startzeitpunkte an die nun gespeicherten Tondauern anzupassen (siehe Hinweistafel im Hauptpatch). Der dritte große Schritt des Gesamtablaufs besteht schließlich in der Generierung einer Melodie, die über der Akkordfolge liegt. Hier wird jeweils ein Ton aus dem zugrunde liegenden Akkord ausgewählt und eine Oktave nach oben verschoben. Dabei kann eingestellt werden, ob dies immer ein zufälliger Akkordton sein soll, oder ob der Ton gewählt wird, welcher dem vorangehenden Melodieton am nächsten bzw. am weitesten entfernt ist.

Das Resultat wird schließlich ganz unten in einem Multi-Seq-Objekt visualisiert.

Abbildung 1: Gesamtaufbau des Kompositionsprozesses

 

Akkordfolgengenerierung

Zur Generierung der Akkordfolge stehen zwei Algorithmen zur Verfügung. Ihnen wird jeweils die gewünschte Länge der Sequenz, welcher der Anzahl der Akkorde entspricht, und der Startakkord bzw. die Tonart übergeben.

Harmonische Akkordfolge mittels Markovkette

Der Ablauf des ersten Algorithmus ist in Abbildung 2 zu sehen. Durch den Subpatch „Create Harmonic Chords“ wird der Grundvorrat von Akkorden erzeugt, der im Folgenden verwendet wird. Dieser entspricht den üblichen Stufen der Kontrapunktlehre und enthält neben Tonika, Subdominante, Dominante und deren Parallelen einen verminderten Akkord auf der siebten Stufe, einen Sixte ajoutée der Subdominante und einen Dominantseptakkord. Der „Key“-Input addiert zu diesen Akkorden einen der gewünschten Tonart entsprechenden Wert hinzu.

Abbildung 2: Subpatch zur Generierung einer harmonischen Akkordsequenz mithilfe einer Markovkette

Durch den Subpatch „Create Transition Matrix“ wird eine Matrix mit Übergangswahrscheinlichkeiten der einzelnen Akkorde erzeugt. Für jede Akkordstufe wird festgelegt, mit welcher Wahrscheinlichkeit sie zu einem bestimmten anderen Akkord übergeht. Die Wahrscheinlichkeitswerte wurden hierbei willkürlich gemäß den in der Kontrapunktlehre üblichen Abläufen gewählt und experimentell angepasst. Dabei wurde für jeden Akkord untersucht, wie wahrscheinlich aus diesem jeweils in einen anderen Akkord übergegangen wird, sodass das Resultat den Konventionen der Kontrapunklehre entspricht und eine häufige Rückkehr zur Tonikastufe ermöglicht, um diese zu fokussieren. Die exakten Übergangswahrscheinlichkeiten sind in der folgenden Tabelle aufgelistet, wobei die Ausgangsklänge in der linken Spalte aufgelistet sind und die Übergänge jeweils zeilenweise repräsentiert werden.

Tabelle 1. Übergangswahrscheinlichkeiten der Harmonien entsprechender Akkordstufen

Die Erzeugung der Akkordfolge findet schließlich in dem Patch „Generate Markov Series“ statt, welcher in Abbildung 3 dargestellt ist. Dieser arbeitet zunächst nur mit Nummerierungen der Akkordstufen, weshalb es genügt, ihm die Länge des Akkordvorrats zu übergeben. Die Lisp-Funktion „Markov Synthesis“ erzeugt nun mithilfe der Übergangsmatrix eine Akkordfolge der gewünschten Länge. Da bei der so erzeugten Sequenz nicht sichergestellt ist, dass der letzte Akkord der Tonika entspricht, kommt eine weitere Lisp-Funktion zum Einsatz, welche so lange weitere Akkorde generiert, bis die Tonika erreicht ist. Da bisher nur mit Nummerierungen der Stufen gearbeitet wurde, werden abschließend die für die jeweiligen Stufen gültigen Akkorde ausgewählt, um die fertige Akkordfolge zu erhalten.

Abbildung 3: Subpatch zur Erzeugung einer Akkordfolge mittels Markovsynthese

 
Chromatische Akkordfolge mittels Tonnetz

Im Gegensatz zur harmonischen Akkordfolge kommen hier alle 24 Dur- und Mollakkorde der chromatischen Skala zum Einsatz (siehe Abbildung 4). Die Besonderheit dieses Algorithmus liegt in der Wahl der Übergangswahrscheinlichkeiten. Diese basieren auf einem sogenannten Tonnetz, welches in Abbildung 5 dargestellt ist.

Abbildung 4: Subpatch zur Generierung einer Akkordfolge auf Basis der Tonnetz-Darstellung

Abbildung 5: Tonnetz (Bildquelle: <https://jazz-library.com/articles/tonnetz/>)

Innerhalb des Tonnetzes sind einzelne Töne aufgetragen und miteinander verbunden. Auf den horizontalen Linien haben die Töne jeweils den Abstand einer Quinte, auf den diagonalen Linien sind kleine (von links oben nach rechts unten) sowie große Terzen (von links unten nach rechts oben) zu sehen. Die sich so ergebenden Dreiecke repräsentieren jeweils einen Dreiklang, beispielsweise ergibt das Dreieck der Töne C, E und G den Akkord C-Dur. Insgesamt sind so alle Dur- und Moll-Akkorde der chromatischen Skala zu finden. Zum Einsatz kommt die Tonnetz-Darstellung meist zu Analyse-Zwecken, da sich aus einem Tonnetz direkt ablesen lässt, wie viele Töne sich zwei verschiedene Dreiklänge teilen. Ein Beispiel ist die Analyse von klassischer Musik der Romantik und Moderne sowie von Filmmusik, da hier die oben verwendeten harmonischen Kontrapunktregeln häufig zu Gunsten von chromatischen und anderen zuvor unüblichen Übergängen vernachlässigt werden. Der Abstand zweier Akkorde im Tonnetz kann hierbei ein Maß dafür sein, ob der Übergang des einen Akkords in den anderen wohlklingend oder eher ungewöhnlich ist. Er berechnet sich aus der Anzahl von Kanten, die überquert werden müssen, um von einem Akkord-Dreieck zu einem anderen zu gelangen. Anders ausgedrückt entspricht er dem Grad der Nachbarschaft zweier Dreiecke, wobei sich eine direkte Nachbarschaft durch das Teilen einer Kante ergibt. Abbildung 6 zeigt hierzu ein Beispiel: Um ausgehend vom Akkord C-Dur zum Akkord f-Moll zu gelangen, müssen drei Kanten überquert werden, wodurch sich ein Abstand von 3 ergibt.

Abbildung 6: Beispiel der Abstandsbestimmung im Tonnetz anhand des Übergangs von C-Dur nach f-Moll

Im Rahmen des Projekts werden nun die Übergangswahrscheinlichkeiten auf Basis der Abstände von Akkorden im Tonnetz berechnet. Hierbei muss lediglich unterschieden werden, ob es sich bei dem jeweils aktiven Dreiklang um einen Dur- oder Mollakkord handelt, da sich innerhalb dieser beiden Klassen für alle Tonarten dieselben Abstände zu anderen Akkorden ergeben. Dadurch kann jeder Übergang von C-Dur bzw. c-Moll aus berechnet und anschließend durch Addition eines Wertes in die gewünschte Tonart verschoben werden. Von beiden Varianten (C-Dur und c-Moll) ausgehend wurden zunächst die Abstände zu allen anderen Dreiklängen im Tonnetz festgehalten:

Abstände von C-Dur:

Abstände von c-Moll:

Um aus den Abständen Wahrscheinlichkeiten zu erhalten wurden zunächst alle Werte von 6 abgezogen, um größere Abstände unwahrscheinlicher zu machen. Anschließend wurden die Resultate als Exponent der Zahl 2 verwendet, um nähere Akkorde stärker zu gewichten. Insgesamt ergibt sich somit die Formel

P=2^(6-x) ; P=Wahrscheinlichkeit,  x=Abstand im Tonnetz

zur Berechnung der Übergangsgewichtungen. Diese ergeben sich für alle möglichen Akkordkombinationen zu folgender Matrix, aus welcher bei Division durch die Zeilensumme 342 Wahrscheinlichkeiten resultieren.

Innerhalb des Patches stellt die Lisp-Funktion „Generate Tonnetz Series“ zunächst jeweils fest, ob es sich bei dem aktiven Akkord um einen Dur- oder Molldreiklang handelt. Da wie bei der harmonischen Vorgehensweise zunächst nur mit den Zahlen 0-23 gearbeitet wird, kann dies über eine einfache Modulo-2-Rechnung bestimmt werden. Je nach Resultat wird der jeweilige Wahrscheinlichkeiten-Vektor herangezogen, ein neuer Akkord bestimmt und schließlich die vorherige Stufe hinzuaddiert. Ergibt sich eine Zahl, die größer als 23 ist, wird 24 abgezogen, um immer innerhalb der selben Oktave zu bleiben.

Nach der zuvor festgelegten Länge der Sequenz ist dieser Abschnitt beendet. Auf eine Rückführung zur Tonika wie im vorherigen Abschnitt wird hier verzichtet, da aufgrund der Chromatik keine so stark ausgeprägte Tonika vorherrscht wie bei der harmonischen Akkordfolge.

Bestimmung der Tonlängen

Nach der Generierung einer Akkordfolge werden für die einzelnen Dreiklänge zufällige Längen berechnet. Dies geschieht im Subpatch „Calculate Durations“, der in Abbildung 6 dargestellt ist. Neben der gewünschten BPM-Zahl wird ein Vorrat an Tonlängen als Vielfache von Viertelnoten übergeben. Wahrscheinlichere Werte kommen in diesem Vorrat häufiger vor, sodass über „nth-random“ eine entsprechende Wahl getroffen werden kann.

Abbildung 7: Subpatch zur zufälligen Bestimmung der Tondauern

Melodiegenerierung

Der grundsätzliche Ablauf der Melodiegenerierung wurde oben bereits dargestellt: Aus dem jeweiligen Akkord wird ein Ton ausgewählt und um eine Oktave nach oben transponiert. Dieser Ton kann zufällig oder entsprechend dem kleinsten oder größten Abstand zum Vorgängerton gewählt werden.

Klangbeispiele

Beispiel für eine harmonische Akkordfolge:

Alex Player - Best audio player
 

Beispiel für eine Tonnetz-Akkordfolge:

 
 
Vonadmin

ISAC-2024 – International Sonosfera Ambisonics Competition

Call for Submission of 3D electroacoustic compositions

– Competition Concert – SONOSFERA, Pesaro – March 15th 2024
– Final concert – ESPACE DE PROJECTION, IRCAM, Paris – March 22nd 2024

 

After the success of the first edition of ISAC-2023, which resulted in more than 100 compositions by 77 candidates from 26 countries, IRCAM Centre Pompidou and Pesaro UNESCO Creative City of Music are proud to announce their collaborative effort for this new edition of the ISAC-2024 competition.

The confluence of IRCAM’s 30th Forum Anniversary and Pesaro’s designation as Italian Capital of Culture 2024, presents a unique opportunity for the competition winners. They will have the privilege to travel from Pesaro to Paris, experiencing the world-renowned public facilities for High-Order Ambisonics (HOA) acousmatic listening: Sonosfera® and Espace de Projection.

Best,
ISAC-2023 Steering Committee 
Vonadmin

Interactive Audiovisual Touch Display

Dieses Projekt thematisiert das Design eines interaktiven Bild- und klanggebenden Displays in Form eines ca. 1.5m*1.0m großen passiven „Holoscreen“ Displays aus Acryl, versehen mit 4 passiven Audio Transducer Systemen und Sensorik. Es soll interaktive, screen- und audio-basierte gestische Interaktion (anwenderisch oder künstlerisch) ermöglicht werden. Zusätzlich zu Touch Input, kann optional mit Tracking der Position / Gaze des Anwenders gearbeitet werden, zur interaktiven Beeinflussung des Displays (z.B. Parallax-Effekte, Focus, etc.). Front- oder Rückprojektion möglich.

 

 

 

 

 

 

 


Proof-of-Concept Pilotversuch

 


Vorgeschlagenes Equipment:

  • Videoprojektor, Audio-verstärker
  • Kamera, Depth Kamera
  • Piezo Sensor, IR Sensor
  • Raspberry Pi
  • MS Kinect

Vergabekriterien:

Freies Studienprojekt

ECTS Punkte:

Referenzen:

Vonadmin

OM-SoX

 

OM-SoX is a free, open source, cross-platform library (Win/MacOS/Linux) for symbolic audio manipulation, analysis and batch processing in OpenMusic. Environments for computer-aided composition have traditionally been conceived for representation and manipulation of abstract musical materials, such as rhythms, chords, etc. More recently, there’s been an increased interest in integration of sound and spatialization data into these contexts (see, e.g. omprisma), considering sound itself as a compositional material. More generally, these works aim at closing the gap between symbolic and signal domains for computer-aided composition. weiterlesen

VonMarlon Schumacher

D-bü. Wettbewerb für außergewöhnliche Konzertformate

Liebe Studierende, liebe Lehrende,

vom 27. Mai bis zum 1. Juni 2024 findet an der Hochschule für Musik Nürnberg der Wettbewerb für außergewöhnliche Konzertformate D-bü statt. Jede Hochschule kann bis zu drei Beiträge (z.B. Performances, Installationen, Musikvermittlungsprojekte) zu diesem Wettbewerb entsenden.

Für einen internen Auswahlprozess erbitten wir die Einreichung von Konzepten (ca. 1-2 DIN A4 Seiten) bis zum 1. November 2023 an Domingos@hfm-karlsruhe.de .

Teilnehmen können Einzelpersonen oder Ensembles mit bis zu acht Mitwirkenden, die an der Hochschule für Musik Karlsruhe studieren. Eine Beteiligung von Alumni und Studierenden anderer Hochschulen ist möglich, sollte aber 25% nicht überschreiten.

Preise werden in Höhe von 4.000 Euro in den Kategorien Publikumserfolg, Originalität und Wiederaufführbarkeit vergeben.

Detaillierte Informationen sind abrufbar unter dem folgenden Link:

https://d-bue.de/ausschreibung/

Am 25.10.2023 von 9-10 Uhr bietet der Veranstalter via Zoom einen Online-Beratungstermin für Studierende an, die Fragen zur Ausschreibung und zum Bewerbungsprozess haben.

Zoom-Meeting beitreten

https://us02web.zoom.us/j/89921387371?pwd=T0k2eW9UdFVwUHBWYWlYdVlTdjRqQT09

Meeting-ID: 899 2138 7371 Kenncode: 372948

Bitte senden Sie Ihre Beiträge bis zum 1. November 2023 an Professor Roberto Domingos (Domingos@hfm-karlsruhe.de).

Wir freuen uns auf Ihre spannenden Beiträge zu D-bü.

Ihr
Professor Roberto Domingos

VonAndres Kaufmes

Räumliche Granularsynthese mit Hilfe von stochastischen Prozessen

Räumliche Granularsynthese mit Hilfe von stochastischen Prozessen

VPRS – Visuelle Programmierung der Raum/Klangsynthese

Prof. Dr. Marlon Schumacher

Abschlussprojekt von Andres Kaufmes 

HfM Karlsruhe – IMWI (Institut für Musikinformatik und Musikwissenschaft)

SoSe 2023

_____________

Für das Abschlussprojekt im Seminar „Visuelle Programmierung der Raum/Klangsynthese“ wurden die Open Music Libraries OMChroma, OMPrisma, Alea und OM-Sox verwendet. OMChroma wurde mit Hilfe der Klasse „FOF-1“ zur Klangsynthese verwendet und OMPrisma zur räumlichen Spatialisierung mit Hilfe der Klassen „Pan“ und „DBAP“. Die Library „Alea“ diente zur zufälligen Steuerung ausgewählter Parameter, mit OM-Sox wurden schließlich Reverb und Delay zum Signal hinzugefügt.

Om-Patch.

Abildung: Open Music Patch

Der Open Music Patch ist wie folgt aufgebaut: Der durch die FOF-1 Klasse synthetisierte Klang wird durch Sox-Lowpass gefiltert und durch Sox-Normalize normalisiert und in eine Soundfile geschrieben. Der Buffer wird nun in die Spatialisierungsklassen (Pan und DBAP) eingespeist, welche dann das nun spatialisierte Signal erneut als Soundfile speichern. Die Parameter des FOF-1 Objekts werden durch ein „BFP-to-Distribution“ Objekt der „Alea“ Library gesteuert, welches die gleiche Hüllkurve wie das FOF-1 Objekt als Input nutzt, um so Parameter für die Klangsynthese zu erstellen. Die ursprüngliche Idee, einen binauralen Renderer zu nutzen ließ sich aufgrund von Kompatiblitäts-Problemen mit der Software leider nicht implementieren, daher wurde mit den „Pan“ und „DBAP“ Objekten gearbeitet. Das Pan Objekt wird ebenfalls durch ein BFP-to-Distribution Objekt der Alea Library gesteuert. Am Ende der Signalkette fügt ein Sox-Process Objekt noch Reverb und Delay zum Audiosignal hinzu.

Klangbeispiel

VonLaura Peter

Shimmer Reverb

Idee

Innerhalb dieses Projekts sollen die Funktionalitäten des DSP-Plugins Valhalla Shimmer von Valhalla DSP mit Hilfe von OpenMusic nachgebaut werden. Valhalla Shimmer ist ein Reverb-Plugin, das sich dadurch auszeichnet im Feedbackloop einen Pitchshifter einzubauen. Gepaart mit einem Reverb mit langer Abklingzeit kann das Feedbacksignal dadurch ein „schimmernden“ Klang erhalten. Dieses Prinzip wurde erstmals von Brian Eno und Daniel Lanois angewandt. Ein Beispiel ist in diesem Video zu finden. Ein ähnlicher Effekt soll jetzt im Rahmen dieses Projekts in OpenMusic entwickelt werden.

Innerhalb eines Loops werden dazu verschiedene angewandt, die mit jeder Iteration neu parametrisiert werden. Unter Anderem zählt dazu die Transposition des Ursprungs-Sounds. Mit jeder Iteration im Loop wird der Sou

nd beispielsweise 12 Halbtöne weiter hoch transponiert. Alle Ausgangssignale werden am Ende mit optionaler zeitlicher Verschiebung übereinandergelegt.

Im folgenden Bild wird die Benutzeroberfläche des Valhalla Shimmer mit allen einstellbaren Parametern dargestellt.

In dem zu erstellenden OpenMusic-Patch werden zunächst die Parameter shift, feedback und size berücksichtigt. Shift beschreibt um wie viele Halbtöne das Eingangssignal mit jeder Iteration transponiert wird. Feedback wird in diesem Projekt als Faktor interpretiert, auf die die Amplitude des Ausgangssignals in Relation zur Amplitude des Eingangssignals skaliert wird. Bei einem Feedback-Wert von 1 sind die Amplituden aller Eingangssignale genauso hoch wie die des ursprünglichen Sounds. Bei einem Wert von 0.5 ist die Amplitude mit jeder Iteration nur halb so hoch wie die der Iteration zuvor. Der Parameter size bestimmt einerseits die Länge des Fade-Ins und Fade-Outs der Ausgangssignale und andererseits die zeitliche Verschiebung zum Ursprungssound.

Prozess

Der Aufbau des Reverbs orientiert sich an einem Beitrag von Geraint Luff. Ein Reverb besteht demnach aus einem Diffuser und einem Feedbackloop.

Innerhalb eines übergeordneten Patches werden der Diffuser und der Feedbackloop ebenfalls in 2 Schritten auf den Input-Sound angewendet.

Diffusion

Innerhalb des Diffusers werden je nach Anzahl des Parameters diffuse-steps mehrmals Delay-Effekte und Allpass-Filter auf den Eingangss

ound angewendet.

Dieser Aufbau lehnt sich erneut dem Vorgehen von Geraint Luff an, sowie an Miller Puckette’s Umsetzung einer Artificial Reverbation. Innerhalb dieser Beiträge wird unter Anderem erwähnt: „As the echo density reaches 2000-4000 echoes/second, they blend into a continuous diffuse so

und“. Im erarbeiteten Patch werden per Default pro 100ms 25 Delays ausgelöst. Würde der Reverb auf eine Sekunde gestreckt werden, ergäben sich 250 Delays in der Sekunde. In dem Beispiel werden zudem 8 Diffusion-Steps durchgeführt. Mit höheren Werten gab es jedoch OpenMusic-spezifische Probleme.

Feedbackloop

In der folgenden Abbildung ist die Umsetzung eines

Loops dargestellt, in dem der Eingangssound hochtransponiert wird. Mit jeder weiteren Iteration wird der Sound entsprechend höher transponiert. Je weiter der Loop fortgeschritten ist, desto leiser oder lauter wird je nach eingestelltem Feedback-Wert durch sox-amplitude auch der resultierende Sound. Alle gesammelten Sounds werden im übergeordneten Patch zusammengemixt und als Soundobjekt ausgegeben.

Zum Testen des Effekts wird folgender Sound verwendet:

Ohne den Diffuser klingt der Sound nach 3 Wiederholungen des Feedback-Loops wie folgt:

Mit dem Diffuser klingt der resultierende Sound so:

Leider konnte kein zufriedenstellender Sound erzeugt werden, da über OpenMusic keine ausreichende hohe Anzahl an Befehlen ausgeführt werden kann, um einen Reverb-Effekt zu erzeugen.

VonMarlon Schumacher

Music for Headphones

Vorstellung des Projekts eines Alumni beim Ircam Forum 23 in Paris mit Software von Marlon Schumacher
Projektverantwortliche: Marco Bidin, Fernando Maglia

Im IRCAM-Forum im März 2023 in Paris (special edition zum Thema AR/VR Spatialization) hat der ehemalige Student und Mitarbeiter Marco Bidin Projekte zum Thema binaurale Klangsynthese vorgestellt, welche durch von Prof. Marlon Schumacher entwickelte Software realisiert wurden. Als Synthese-Werkzeuge kamen  unter Anderem CSound, Cycling 74’s Max, OpenMusic mit der Library OMPrisma zum Einsatz, gemastert wurde in der DAW Logic Pro X. Die Klangsynthese verwendet teils subtraktive Ansätze, Waveguides und andere physikalische Modelle.

 

Ausschnitt eines in Csound implementierten Orchesters.

Music for Headphones III ist eine Produktion von ALEA, Associazione Laboratorio Espressioni Artistiche.

Zur Beschreibung der Präsentation geht es mit diesem Link.

Im folgenden Video sind Klangbeispiele zu hören, für welche Teile des Programmcodes und Workflows demonstriert werden.

VonAndres Kaufmes

Transient Processor

Transient Processor

SKAS-Symbolische Klangverarbeitung und Analyse/Synthese

Prof. Dr. Marlon Schumacher

Zwischenprojekt von Andres Kaufmes 

HfM Karlsruhe – IMWI (Institut für Musikinformatik und Musikwissenschaft)

WiSe 2022/23

_____________

 

Für dieses Zwischenprojekt habe ich mich mit der Implementierung eines Transient- Prozessors in OpenMusic mit Hilfe der OM-Sox Library beschäftigt.
Mit einem Transient Prozessor (auch Transient Designer oder Transient Shaper) lässt sich das Ein- und Ausschwingverhalten (Attack/Release) der Transienten eines Audiosignal beeinflussen.

Das erste vorgestellte Hardware Gerät war der 1998 von der Firma SPL vorgestellte SPL TD4, welcher als 19″ Rack-Gerät erhältlich war und in fortgeschrittener Version bis heute erhältlich ist.

           

Transient Designer der Firma SPL.  (c) SPL 

Transient Designer eignen sich besonders für die Bearbeitung von perkussiven Klängen oder auch für Sprache. Zunächst müssen die Transienten aus dem gewünschten Audiosignal isoliert werden, dies lässt sich zum Beispiel mit Hilfe eines Kompressors umsetzen. Durch eine kurze Attack-Zeit werden die Transienten „geduckt“ und das Signal kann vom Original abgezogen werden. Anschließend kann das Audiosignal im Verlauf der Signalkette mit weiteren Effekten bearbeitet werden.

Transient-Prozessor Patch.                        FX- Kette der beiden Signalwege (links „Transient“, rechts „Residual“).

Im Patch zu sehen ist an oberster Stelle die zu bearbeitende Audiodatei, von welcher, wie eben beschrieben, mit Hilfe eines Kompressors die Transienten isoliert, und das resultierende Signal vom originalen abgezogen wird. Nun werden zwei Signalwege gebildet: Die isolierten Transienten werden in der linken „Kette“ verarbeitet, das residuale Signal in der rechten. Nachdem beide Signalwege mit Audioeffekten bearbeitet wurden, werden sie zusammengemischt, wobei das Mischverhältnis (Dry/Wet) beider Signalwege nach belieben eingestellt werden kann. Am Ende der Signalverarbeitung befinden sich ein globaler Reverb-Effekt.

„Scope“ Ansicht der beiden Signalwege.               Skizzen zum möglichen Signalweg und Verarbeitung.

Klangbeispiele:

Isoliertes Signal:

Residuales Signal:

VonVeronika Reutz

Immersive Körper

Die Installation „Immersive Bodies / Immersive Körper“ im Auftrag der GEDOK Karlsruhe ist eine immersive, intermediale Installation, die die Auswirkungen des Klimawandels auf die allgemeine Befindlichkeit der Bevölkerung untersucht. Da das aktuelle Thema von GEDOK der Klimawandel ist, wollte ich mich den anderen Künstlern anschließen, um dieses Thema zu erforschen. Diese Arbeit konzentriert sich jedoch auf die Erforschung einer etwas anderen Perspektive, die sich nicht auf die Auswirkungen der Veränderung auf der Erde konzentriert, sondern auf den mentalen Zustand der Bevölkerung.

Diese Installation bietet den Menschen einen sicheren und entspannenden Raum, den sie genießen können und gleichzeitig ein Bewusstsein dafür verbreiten, wie wir der Erde und uns selbst sowohl physisch als auch mental helfen können. Die Installation wird immersiv sein und alle Sinne der Besucher berühren. Während der Installation werden mehrere Konzerte gespielt, darunter das Eröffnungskonzert am 23.06.2023 um 20 Uhr. Über die Musik, die während der Installation und der Konzerte gespielt wird, werden wir heute sprechen!

Verantwortliche: Veronika Reutz Drobnic, Studentin der HfM Karlsruhe, Master Komposition, 3. Semester

Websites:

https://immersive-bodies.veronikareutz.com/

weiterlesen