Schlagwort-Archiv OpenMusic

VonZeno Lösch

Akusmatische Studie von Zeno Lösch

Dieser Beitrag handelt über die drei Iterationen einer akusmatischen Studie von Zeno Lösch, welche im Rahmen des Seminars „Symbolische Klangverarbeitung und Analyse/Synthese“ bei Prof. Dr. Marlon Schumacher an der HFM Karlsruhe durchgeführt wurden. Es wird über die grundlegende Konzeption, Ideen, aufbauende Iterationen sowie die technische Umsetzung mit OpenMusic behandelt.

Verantwortliche: Zeno Lösch, Master Student Musikinformatik der HFM Karlsruhe, 1. Semester

 

Idee und Konzept

 

Meine Inspiration für diese Study habe ich von dem Freeze Effekt der GRM Tools.

Dieser Effekt ermöglicht es ein Sample zu layern und ihn gleichzeitig in verschiedenen Geschwindigkeiten abzuspielen. 

Mit diesem Prozess kann man eigenständige Kompositionen, Sound-Objekte, Klanggebilde u.s.w. erstellen.

Meine Idee ist es dasselbe mit Open Music zu programmieren. 

Dazu habe ich die Maquette verwendet und om-loops. 

In der OpenMusicPatch findet man die verschiedenen Prozesse des layern des Ausgangsmaterials.

Das Ausgangsmaterial ist eine „gefilterte“ Violine. Diese wurde mit dem Prozess der Cross-Synthesis erstellt. Dieser Prozess des Ausgangsmaterials wurde nicht in Open Music erstellt. 

Ausgangsmaterial

 

Musik kann nicht ohne Zeit existieren. Unsere Wahrnehmung verbindet die verschiedenen Klänge und sucht einen Zusammenhang. In diesem Prozess, auch vergleichbar mit Rhythmus, wird das einzelne Objekt mit anderem Objekten in Verbindung gesetzt. Digitale Klangmanipulation ermöglicht es mit Prozessen aus einem Klang andere zu erstellen, welche im Zusammenhang zu dem gleichen stehen. 

Zum Beispiel ich Präsentiere den Klang in einer Form und verändere ihn an einem anderen Zeitpunkt in der Komposition. Es entsteht meistens ein Zusammenhang, insofern der Hörer diesen nachvollziehen kann. 

Man kann ähnlich wie bei Noten eine Transposition bzw. die Tonhöhe verändern. 

Bei einer Note wird dadurch die Frequenz verändert. Bei einem digitalen Material kann es zu sehr spannenden Ergebnissen führen. Bei einem Klavier sind die Obertöne bei jeder Note in einem Zusammenhang zum Grundton. Diese sind festgelegt und sind mit traditionellen Noten nicht veränderbar. 

Bei digitalen Material spielt der Effekt, der transponiert, eine sehr wichtige Rolle. Je nach Art des Effekts habe ich verschiedene Möglichkeiten das Material zu manipulieren nach meinen eigenen Regeln.

Der Nachteil bei Instrumenten ist es, dass zum Beispiel bei einer Violine, der Spieler nur einmal die Note spielen kann. Zehnmal die gleiche Note bedeutet zehn Violinen. 

In OpenMusic ist es möglich das „Instrument“ beliebig oft zu spielen (insofern es die Rechenleistung des Computers schafft). 

 

Prozess

Um das Grm-Freeze nachzubauen, wurde zuerst eine moquette mit leeren Patches gefüllt.

Füllen einer Moquette mit leeren Patches

 

Anschließend wurde aus der Moquette mit einem om-loop das soundfile an die Positionen der leeren Patches gerendert.

Loop für soundfile Positionen

 

Um clipping zu vermeiden wurde folgender Code verwendet.

Sox-Mix und Anti Clip

 

Layer Study erste Iteration

 

Das Ausgangsmaterial wird am Anfang präsentiert. Im Laufe der Studie wird es immer wieder verändert und verschiedenartig gestapelt. 

In der Studie selbst wird auch mit der Dynamik gespielt. Je nach Algorithmus der Klangstapelung wird die Dynamik in jedem Soundobjekt verändert. Da es sich um mehr als einen Klang in der Zeit handelt werden diese Klänge normalisiert, je nach wie viele Klänge in dem Algorithmus präsent sind um Clipping zu vermeiden. 

Die Studie beginnt mit dem Ausgangsmaterial. Dieses wird anschließend in einer verschiedenen zeitlichen Abfolge präsentiert. 

Dieser Layer wird dann gefiltert und er ist auch leiser. Der nächste Entwickelt sich zu einem „halligerm“ Klang. Ein Kontinuum. Das Kontinuum bleibt es ist wird wieder anders Präsentiert.

Im vorletzten Klang sind eine Form von glissandi zu hören, welche wieder in einem Klang enden, der ähnlich ist wieder zweite, aber lauter ist. 

Der Prozess um den Klang zu stapeln und zu verändern ist bei jeder Sektion sehr ähnlich.

Die Position wird von der leeren Patch in der Moquette gegeben.

Anschließend wird die y-Position und x-Position Parameter für eine Modulation

Implementierung der x- und y-Positionen als Modulationsparameter
Layer Study erste Iteration

 

Layer Study zweite Iteration

Ich habe für jede Sektion versucht ein anderes Stereobild zu erzeugen. 

Es wurden verschiedene Räume simuliert.

Eine Technik, die dabei verwendet wurde ist das Mid/Side.

Bei dieser Technik wird aus einem Stereosignal das Mid und Side mit folgendem Prozess extrahiert:

Mid = (L + R) * 0.5

Side = (L – R) * 0.5

Zudem wurde ein Aural Exciter werdet.

Bei diesem Prozess wird das Signal mit einem Hochpassfilter gefiltert, verzerrt und dem Eingangssignal wieder hinzugefügt. Man kann dadurch eine bessere Definition erreichen.

Durch das Mid/Side wird der Aural Exciter nur auf einem der beiden angewendet und es wird als „definierter“ Wahrgenommen.

Um den Prozess wieder zu einem Stereo signal zu kommen wird folgender Prozess angewendet:

L = Mid + Side

R = Mid – Side

Mid Side Prozess

 

Um den Klang weiter zu verräumlichen wurde mit Hilfe eines Allpassfilters und einem Kammfilter die Phase von Mid oder Side Anteil verändert.

Dekorrelation der Phase

 

Layer Study Stereo

 

Layer Study dritte Iteration

Bei dieser iteration wurde das Stereofile auf acht Lautsprecher aufgeteilt.

Es wurden die verschiedenen Sektionen der Stereokomposition extrahiert und verschiedene Techniken der Aufteilung verwendet.

Bei einen dieser wurde ein unterschiedliches fade in und fade out für jeden Kanal verwendet.

In einer akousmatischen Ausführung einer Komposition kann man dieses fade in und fade out mit den Reglern eines Mixers erziehlen.

Dazu wurde ein mapcar und repeat-n verwendet.

Random Fades für Multichannel

Bei den anderen Prozessen wurde die Position der jeweiligen Kanäle verändert. Es wurde ein Delay verwendet.

Multichannel Delay

Die finale Version auf 2-Kanälen verfügbar.

Downmix Layer Study 8 Kanäle auf 2 Kanäle

 

VonBrandon Snyder

Integrating ML with DSP Frameworks for Transcription and Synthesis in CAC

 

A link to download the applications can be found at the end of this blogpost. This project was also presented as a paper at the 2022 International Conference on Technologies for Music Notation and Representation (TENOR 2022).

Modularity in Sound Synthesis Tools

This blogpost walks through the structure and usage of two applications of machine learning (ML) methods for sound notation and synthesis. The first application is a modular sample replacement engine that uses a supervised classification algorithm to segment and transcribe a drum beat, and then reconstruct that same drum beat with different samples. The second application is a texture synthesis engine that uses an unsupervised clustering algorithm to analyze and sort large numbers of audio files.

The applications were developed in OpenMusic using the OM-SoX modular synthesis/analysis framework. This was so that the applications could be as modular as possible. Modular, meaning that they could be customized, extended, and integrated into a user’s own OpenMusic workflow. We believe this modularity offers something new to the community of ML and sound synthesis/analysis tools currently available. The approach to sound synthesis and analysis used here involves reading and querying many separate audio files. Such an approach can be encompassed by the larger term of „corpus-based concatenative synthesis/analysis,“ for which there are already several effective tools: the Caterpillar System, Audioguide, and OM-Pursuit. Additionally, OM-AI, ml.*, and zsa.descriptors are existing toolkits that integrate ML methods into Computer-Aided Composition (CAC) environments. While these tools are very precise, the internal workings of them are not immediately clear. By seeking for our applications to be modular, we mean that they can be edited, extended and integrated into existing CAC programs. It also means that they can be opened and up, examined, and reverse-engineered for a user’s own education.

One example of this is in figure 1, our audio analysis engine. Audio descriptors are implemented as subpatches in lambda mode, and can be selected as needed for the input audio. 

Figure 1: Interchangeable audio descriptors are set as patches in lambda mode. Here, a patch extracting 13 MFCCs is being used.

Another example is in figure 2, a customizable distance function in our texture synthesis application. This is the ML clustering algorithm that drives the application. Being a patch built from smaller OpenMusic objects, it is not only a tool for visualizing the algorithm at work, it also allows a user to edit it. For example, the n-dimension euclidean distance function could be substituted with another distance function, if needed.

Figure 2: A simple k-means clustering algorithm, built within an OpenMusic abstraction. The distance function takes the form of a subpatcher in lambda mode.

 With the modularity of the project introduced, we will on the next page move on to the two specific applications.

Seiten: 1 2 3 4

VonLorenz Lehmann

Library „OM-LEAD“

Abstract:

Die Library „OM-LEAD“ ist eine Library für regelbasierte, computergenerierte Echtzeit-Komposition. Die Überlegungen und Ansätze in Joseph Brancifortes Text „FROM THE MACHINE: REALTIME ALGORITHMIC APPROACHES TO HARMONY AND ORCHESTRATION“ sind Ausgangspunkt für die Entwicklung.

Momentan umfasst die Library zwei Funktionen, die sowohl mit CommonLisp, als auch mit schon bestehenden Funktionen aus dem OM-Package geschrieben sind.

Zudem ist die Komposition im Umfang der zu kontollierenden Parametern, momentan auf die Harmonik und die Stimmführung begrenzt. 

Für die Zukunft möchte ich ebenfalls eine Funktion schreiben, welche mit den Parametern Metrik und Einsatzabstände, die Komposition auch auf zeitlicher Ebene erlaubt.

Entwicklung: Lorenz Lehmann

Betreuung und Beratung: Prof. Dr. Marlon Schumacher

Mein herzlicher Dank für die freundliche Unterstützung gilt Joseph Branciforte und 

Prof. Dr. Marlon Schumacher.

weiterlesen

Seiten: 1 2 3 4

VonLorenz Lehmann

SPCL – 1) Formen, S-Expressions, Funktionen

Einführung in die Sprache Common LISP

In dieser Unterrichtseinheit wird die Sprache Common LISP eingeführt. Hierzu betrachten wir Besonderheiten dieser Sprache, insbesondere die Syntax: sog. „S-Expressions“ (symbolic expressions) und Prefix (oder „Polish“) Notation. Des Weiteren befassen wir uns mit dem Konzept der  Evaluierung von Formen unter Berücksichtigung der Äquivalenz von Daten und Funktionen: „A lisp form is a lisp datum that is also a program, that is, it can be evaluated without an error.

Wir haben uns mit der Evaluierungsreihenfolge studiert. Lisp evaluiert Formen rekursiv. Hierzu ein kleines Beispiel aus diesem online LISP Tutorial. Folgende form soll evaluiert werden:

(+ 33 (* 2.3 4)) 9)

  1. The + function is looked up.
  2. 33 is evaluated (its value is 33).
  3. (* 2.3 4) is evaluated:
    1. The * function is looked up.
    2. 2.3 is evaluated (its value is 2.3)
    3. 4 is evaluated (its value is 4)
    4. 2.3 and 4 are passed to the * function.
    5. The * function returns 9.2. This is the value of (* 2.3 4).
  4. 9 is evaluated (its value is 9).
  5. 33, 9.2, and 9 are passed to the + function.
  6. The + function returns 51.2. This is the value of (+ 33 (* 2.3 4) 9).
  7. The Lisp system returns 51.2.

Wir haben sodann verschiedene Datentypen kennengelernt: symbols, floats, integers und ratios.

Wir haben unsere ersten Programmierversuche gestartet und unsere ersten kleinen LISP forms geschrieben. Dabei haben wir sog. „primitive functions“ (Funktionen, die bereits in der Sprache implementiert sind) verwendet, um Operationen mit Daten auszuführen. Diese waren: (*für die u.s. Tabellen nehmen wir an, die  Variable A hätte den Wert 10 und Variable B den Wert 20) :

Arithmetische Operatoren

+, -, *, /, mod, rem, incf, decf

Operator Description Example
+ Adds two operands (+AB) will give 30
Subtracts second operand from the first (- A B) will give -10
* Multiplies both operands (* A B) will give 200
/ Divides numerator by de-numerator (/ B A) will give 2
mod, rem Modulus Operator and remainder of after an integer division (mod B A) will give 0
incf Increments operator increases integer value by the second argument specified (incf A 3) will give 13
decf Decrements operator decreases integer value by the second argument specified (decf A 4) will

Prädikatsfunktionen

equalp, symbolp, numberp, oddp, evenp

Operator Description Example
equalp Checks if the values of the two arguments are equal (= A B) is not true.
symbolp Checks if the value of the argument is a symbol (symbolp A) is not true
numberp Checks if the value of the argument is a number (numberp A) is true.
oddp Checks if the value of the argument (integer) is odd (oddp A) is not true
evenp Checks if the value of the argument (integer) is even (evenp A) is true

Vergleichsoperatoren

=, /=, >, <, >=, <=, max, min

Operator Description Example
= Checks if the values of the operands are all equal or not, if yes then condition becomes true. (= A B) is not true.
/= Checks if the values of the operands are all different or not, if values are not equal then condition becomes true. (/= A B) is true.
> Checks if the values of the operands are monotonically decreasing. (> A B) is not true.
< Checks if the values of the operands are monotonically increasing. (< A B) is true.
>= Checks if the value of any left operand is greater than or equal to the value of next right operand, if yes then condition becomes true. (>= A B) is not true.
<= Checks if the value of any left operand is less than or equal to the value of its right operand, if yes then condition becomes true. (<= A B) is true.
max It compares two or more arguments and returns the maximum value. (max A B) returns 20
min It compares two or more arguments and returns the minimum value. (min A B) returns 20

 

Logische Operatoren

Hierfür nehmen wir an, A hat den Wert NIL (false) und B hat den Wert 5 (true).

Operator Description Example
and It takes any number of arguments. The arguments are evaluated left to right. If all arguments evaluate to non-nil, then the value of the last argument is returned. Otherwise nil is returned. (and A B) will return NIL.
or It takes any number of arguments. The arguments are evaluated left to right until one evaluates to non-nil, in such case the argument value is returned, otherwise it returns nil. (or A B) will return 5.
not It takes one argument and returns t if the argument evaluates to nil. (not A) will return T.

Danach haben wir die Macro Funktion „defun“ kennen gelernt, um unsere eigenen Funktionen zu definieren. Dies haben wir dann mit der Programmierung eines kleinen Würfelspiels zur Anwendung gebracht.

Seiten: 1 2

VonLorenz Lehmann

SPCL – Rekursion

Tafelaufschrieb zu Rekursion (vgl. LISP code auf Ilias):

; Beispiel mit cond

(defun myfun ()
    (cond ([termination-condition] [termination-action])
          ([recursion-condition] (myfun ()))
     )
)

; Beispiel mit if

(defun myfun ()
 (if  [termination-condition] 
    [termination-action]
  (myfun ())
  )
 ) 
      

IMG_5400

Hier eine Visualisierung der Rekursiven Funktion zur Generierung von Fibonacci Zahlen. Code-Beispiel:

(defun fib1 (n)
 (if  (or (= n 1) (= n 0)) 
    1
  (+ (fib1 (- n 1)) (fib1 (- n 2)))
  )
 ) 
      
IMG_5402